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Abstract
Despite the many successes of wavelet analysis in image and signal
processing, the incorporation of continuous wavelet transform theory within
quantum mechanics has lacked a compelling, first principles, motivating
analytical framework, until now. For arbitrary one-dimensional rational
fraction Hamiltonians, we develop a simple, unified formalism, which clearly
underscores the complementary, and mutually interdependent, role played
by moment quantization theory (i.e. via scalets, as defined herein) and
wavelets. This analysis involves no approximation of the Hamiltonian within
the (equivalent) wavelet space, and emphasizes the importance of (complex)
multiple turning point contributions in the quantization process. We apply
the method to three illustrative examples. These include the (double-well)
quartic anharmonic oscillator potential problem, V (x) = Z2x2 + gx4, the
quartic potential, V (x) = x4, and the very interesting and significant non-
Hermitian potential V (x) = −(ix)3, recently studied by Bender and Boettcher.

PACS numbers: 0365, 0230H, 0365G

1. Introduction

Despite the many accomplishments of wavelet theory (Grossmann and Morlet 1984,
Daubechies 1988), its incorporation into quantum mechanics has lacked a compelling
theoretical motivation, until now. We depart from the conventional approach of emphasizing
the compact support character of the dual-wavelet basis (Cho et al 1993, Wei and Chou
1996, Tymczak and Wang 1997) in making variational computations numerically economical.
Instead, we focus on redefining the bound state quantization problem in a manner that is faithful
to the essence of wavelet analysis: a space-scale parameter-dependent, multiscale formalism,
for efficiently analysing and recovering the important local features of a configuration,
�(x) (i.e. signal, image or wavefunction), with minimal distortion. This mandates that
the quantization problem be reformulated so as to emphasize the significant localized
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characteristics of a given system. We can achieve this through the turning point quantization
approach developed here.

Consider the bound state Schrödinger–Hamiltonian representation,

ε∂2
x�(x) = (V (x) − E)�(x) (1)

where ε is the kinetic energy expansion parameter. It is easy to argue (Handy, Murenzi,
Bouyoucef and Brooks 2000 (hereafter HMBB)), both within quantum operator theory and
wavelet theory, that the most important local structures of the system are the inflection points
of the solution, ∂2

x�(xi) = 0, where the kinetic energy is zero. These are of two types: nodal
points, �(xn) = 0, where the wavefunction changes signature; and turning points,

V (τ�) = E (2)

{τ�(E)|0 � � � ms}. Since the latter are known, a priori, as functions of the energy, E, they
become the most accessible localized features of the wavefunction around which to build a
wavelet-based, turning point quantization analysis. In the case of one-dimensional problems,
we will be emphasizing all of the turning points, including those in the complex plane. For
multidimensional problems (not discussed here), one would consider particular points on the
real turning hypersurfaces (HMBB 2000).

Having identified the (complex) turning points as the important localized features of
the physical quantum system, a multiscale analysis must proceed by generating the solution
through a constructive process that starts at the largest possible scale (a = ∞), and identifies
each of the important, successively smaller scale contributions (a → 0).

In principle, this is possible through a moment equation (ME) representation of the
Schrödinger equation. This involves transforming the Schrödinger equation into an ME
relation involving the power moments of the solution: µp ≡ ∫

dx xp�(x), for p � 0. The
determination of the physical energy, and other global characteristics of the physical solution
(i.e. expectation values, etc), can be obtained through various moment quantization (MQ)
formulations (Blankenbekler et al 1980, Killingbeck et al 1985, Handy and Bessis 1985,
Handy et al 1988a b, Fernandez and Ogilvie 1993). One of the salient features of the ME
representation, as repeatedly emphasized in the works of Handy (1981), Handy and Bessis
(1985), Handy et al (1988a, b) and HMBB (2000) is that kinetic energy ε-expansions are
analytic. Furthermore, the zeroth-order form of this expansion depends explicitly on all the
(complex) turning points of the system.

The use of the ME relation, in generating the physical wavefunction, can be difficult.
This is one of the important aspects of the classic moment problem (Shohat and Tamarkin
1963) in pure mathematics. However, various important formulations have been developed,
as itemized below (Handy 1996, Tymczak et al 1998a, b). A more efficient reformulation
of this problem is to work with the generalized, space-scale-dependent moments, µp(a, b) =∫

dx (x−b)p S( x−b
a

)�(x), referred to as scalets. These are defined in terms of an appropriately
chosen scaling function, S. Assuming the normalization S(0) ≡ 1, the infinite scale scalet
configurations, µp(a = ∞, b), correspond to linear superpositions with respect to the power
moments: µp(a = ∞, b) = ∫

dx (x − b)p�(x) = ∑p

q=0

(
p

q

)
(−b)p−qµq .

Scalets are inextricably linked to wavelet analysis, as developed here. They acquire, and
impart to wavelet theory, all the important properties manifested within the ME representation
pertaining to the analyticity of kinetic energy expansions and (complex) turning point
contributions.

There is one fundamental manifestation of the intimate relationship between the moment
problem and wavelet analysis. Both critically depend on, or are impacted by, the group of
affine maps: x → x−b

a
(in one dimension). Specifically, the affine group is used in wavelet
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theory to generate the dual-wavelet basis (described in equations (4) and (5)); whereas the ME
representation is naturally invariant under the affine group. The former is clarified below and
in the next section.

With respect to the latter, the power moments, µp, can be regarded as the ‘projection of �’
onto the monomial-basis functions, xp. Given the affine map invariance of polynomial spaces,
any transformation of the Schrödinger equation into an ME representation should simplify the
underlying wavelet analysis. This has been confirmed through the moment-wavelet formalism
of Handy and Murenzi (hereafter HM) (1997, 1998a, b, 1999).

Related to this is the fact that the referenced (MQ) works by Handy and Bessis (1985), and
Handy et al (1988a, b), can be characterized as defining an affine map invariant, variational
quantization procedure, based on knowledge of the signature structure of the physical
wavefunction (i.e. knowing the location of all the nodal points of the wavefunction). This
approach uses polynomial sampling functions to test for ‘localized’ deviations from the
underlying positivity constraints (of the moment problem), in a multiscale manner. This
procedure yielded excellent results for singular perturbation/strong coupling-type problems.

Other examples of the multiscale robustness of MQ methods include the multiscale
reference function (MRF) variational representation of Handy (1996), and the MRF
quantization methods of Tymczak et al (1998a, b). Both of these approaches are based on
an MRF representation (i.e. equation (3)) which exploits the analytic properties of certain
Fourier space basis representations, within a multi-wavelet, basis-like, expansion. The MRF
representation is also intimately related, if not identical, to the distributed approximating
functionals (DAFs) method of Hoffman, Kouri, and co-workers (1993).

For the important, and large, class of one-dimensional, bound-state, rational fraction
potentials, the number of (complex) turning points is exactly the same as the dimension of the
linear, moment equation representation for the Schrödinger equation (i.e. 1+ms). This permits
the implementation of an exact (closed) turning point quantization (TPQ) analysis.

There are two approaches for doing this. The first was developed by HMBB (2000), and
makes use of the MRF basis expansion for the wavefunction,

�MRF (x) =
∞∑
n=0

an[µ0, . . . , µms
;E](−∂x)

nR(x) (3)

where the reference function, R(x), is arbitrary, and the coefficients are linear in the
1 + ms independent variables of the ME representation. Imposing the TPQ conditions,
∂2
τ�
�MRF (τ�(E)) = 0, then leads to a determinantal equation for the energy. This approach

yields excellent physical estimates, but also many spurious solutions. In order to discriminate
between the physical and spurious solutions, in a scale consistent manner, HMBB employed
some specialized, wavelet-based, methods (we review, and expand upon, their formalism in
the appendix).

1.1. Result no 1

The reason that many spurious (‘noise’) solutions are generated within the TPQ-MRF
representation is that the underlying basis functions used, (−∂x)

nR(x), are not necessarily
well suited to the localized nature of the TPQ conditions (despite the robustness, and algebraic
simplicity, of the MRF representation when used in the non-localized context of Tymczak et al’s
(1998a, b) quantization formalism). Any approximation errors in the MRF representation are
exacerbated upon evaluating the highly localized, kinetic energy operator. What is required is
a basis representation that results in less ‘noise’ generation, upon evaluating the second-order
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derivative expression. This is possible through a wavelet (DCWT) representation, as developed
in this work (refer to sections 2–4), which takes the form

�DCWT (x) = 1

ν

∑
−∞<l, j<+∞

wl,j [µ0, . . . , µms
;E]

1√
2l

D
(
x − j2l

2l

)
(4)

within the dyadic wavelet basis representation (Daubechies 1991, HM 1999). The dual basis
functions, D, are multiplied by (wavelet-transform-generated) coefficients, wl,j , that are also
linear with respect to the ME-independent variables, µ�s. They are given by the wavelet
transform relation

wl,j = 1√
2l

∫
dx W

(
x − j2l

2l

)
�(x) (5)

where W is referred to as the mother wavelet.
We show in this work that the TPQ conditions applied to the DCWT representation,

∂2
τ �DCWT (τ�(E)) = 0 (6)

0 � � � ms , also produces a determinantal equation for the energy which yields significantly
fewer (or no) spurious solutions. This defines the second (and preferred) TPQ approach.

An important part of the proposed TPQ-DCWT method is that the wl,j coefficients are
linearly dependent on the µ� variables. This comes from studying the properties of the scalet
equation,

∂α
−→µ (α, b) = M(α, b;E, ε)−→µ (α, b) (7)

where −→µ (α, b) = (µ0(α, b), . . . , µms
(α, b)). The scalet equation corresponds to transforming

the Schrödinger equation into a scaling transform representation, defined in terms of the
generalized, space-scale-dependent, moments,

µ�(a, b) ≡
∫

dx x�S

(
x

a

)
�(x + b) (8)

α ≡ 1
a

, for a suitable scaling function, S (i.e.
∫

dx S(x) �= 0). The µ�(a, b)s are referred to
as scalets. The scalets can be regarded as the generators of the DCWT expansion coefficients
(i.e. the wl,j s). Depending on the scale regime of interest, a ≈ ∞, or a ≈ 0, we will use the
notation ‘µp(α, b)’, or ‘µp(a, b)’, respectively.

The implementation of the TPQ-DCWT analysis is done by first defining the general scalet
solution

−→µ (α, b) =
ms∑
�=0

µ�

−→B(�)(α, b;E, ε) (9)

where each basic scalet solution
−→B(�)(α, b;E, ε) satisfies equation (7), subject to certain

initial, infinite scale (α = 0), conditions. Using this general solution, one then generates
the wl,j -wavelet coefficients. (We restrict our analysis to mother wavelets whose wavelet
transforms can be expressed as linear superpositions over the scalets.) In this manner, the
�DCWT representation in equation (4) is obtained.
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1.2. Result no 2

If the scaling function, S, decreases more slowly than the physical wavefunction,
lim|x|→∞ �(x)/S(x) = 0, then the matrix function in the scalet equation will be analytic
in α. This means that all scalet solutions will be analytic in α (and absolutely convergent as
well). The ε dependence of M will be in terms of powers of εαρ (i.e. ρ = integer). Thus,
any ε-expansion, within the scalet representation, will involve a resummation with respect to
the underlying α-expansion. This is expected to produce an analytic ε power series as well.
Accordingly, ε-perturbation is analytic within the scalet representation (refer to section 5).

We develop the ε-perturbative expansion for the scalets, and show that the associated
configurations manifest a localized structure within the extended space-scale parameter domain
(α, b). The importance of this is that these localized, basis-like, scalet configurations are
manifestly well adapted to the underlying physics of the problem in question. One of the
challenges of wavelet analysis is that the selection of an optimal dual-wavelet basis (i.e. D and
W) is not evident at the outset. In this regard, the kinetic energy scalet expansion representation
may be a better alternative to the DCWT representation.

The ε-perturbation formalism is an exact reformulation of the (approximate) high-
temperature lattice expansion methods proposed by Bender and Sharp (1981) and Handy
(1981).

1.3. Result no 3

For the physical energy, E, and power moments, {µ�|0 � � � ms}, in equation (7) or
equation (9), the scalets will converge to the physical wavefunction, in the zero-scale limit
(HM 1997, 1998a, b, 1999),

lim
a→0

µ�(a, b)

a1+�ν�
= �(b) (10)

provided ν� ≡ ∫
dx x�S(x) �= 0.

This is always true for � = 0, by definition of the scaling function. For this case, the
zero-scale asymptotic expansion is given by µ0(a,b)

aν0
= �(b)+ a2 ν2

2ν0
∂2
b�(b)+ O(a3), assuming

ν1 = 0. Thus, one can calculate ∂2
b�(b) by taking the zero-scale limit of ∂2

b

(
µ0(a,b)

aν0

)
, or

identifying the second-order term of the asymptotic expansion. The latter is preferable, since
it avoids any numerical second-order differencing of µ0(a,b)

aν0
, with respect to the translation

variable, b. We will denote this process by ν0
ν2
∂2
a

(
µ0(a,b)

aν0

)
, although no actual differentiation is

done. That is, in practice, we generate numerically the a-scale dependence of the B(�)s, and
identify the second-order asymptotic expansion term.

One would think that it should be possible to bypass the TPQ-DCWT analysis and directly
implement a TPQ-scalet analysis by constraining the general scalet solution according to
∂2
a

(
1

aν0
µ0(a, τ�(E);E, ε, µ0, . . . , µms

)
) = 0, or equivalently

∂2
a

(
1

aν0

ms∑
�1=0

µ�1B(�1)
0 (a, τ�2(E);E, ε)

)
= 0 (11)

0 � �1 � ms , for some sufficiently small-scale value, a ≈ 0. This would lead to
a 1 + ms determinantal equation for the energy, Det(((E)) = 0, where (�1,�2(E) =
∂2
a

(
1

aν0
B(�1)

0 (a, τ�2(E);E, ε)
)
.

We show in section 6 that such a pure TPQ-scalet analysis cannot work because these
conditions will be satisfied, for any E (physical or unphysical), by some set of µ�s. Thus, the
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above TPQ-scalet conditions cannot distinguish between the physical and unphysical energy
values.

The precise reason for the above is that for any E, there will always be a set of µ�s for
which the corresponding scalet solution converges to the Schrödinger equation. That is, the
zero-scale asymptotic expansion of the general scalet solution, for any E, and appropriate
{µ�|0 � � � ms} values,

µ0(a, b) = aν0

(
�0(b) +

a2ν2

2ν0
�2(b) + O(a3)

)
(12)

(where it is assumed that �2(b) = ∂2
b�0(b)) generates configurations that satisfy the

corresponding Schrödinger equation: −ε�2(b) + V (b)�0(b) = E�0(b).
However, any solution to the Schrödinger equation, physical or not, has zero kinetic

energy at all the (complex) turning points. Thus, a purely TPQ-scalet ansatz cannot distinguish
between the physical and unphysical solutions.

We prove the above in two ways. The first, and more general argument (refer to section 6.1),
shows that the compactly supported scalets, µ−δ1,δ2

� (a, b) ≡ ∫ δ2

−δ1
dx x� S(x/a)�(x +b), which

exist for any physical (bounded) or unphysical (unbounded) Schrödinger equation solution,
�, define an ME representation which is asymptotic to the ME relation for the µ�(a, b)s.
Furthermore, theµ−δ1,δ2

� (a, b)s also satisfy equation (10). This explains why the scalet equation
can generate (physical or unphysical) configurations that satisfy the Schrödinger equation.

The second argument (refer to sections 6.2 and 6.3) is to study the leading, zero-scale
asymptotic behaviour of the scalet equation for the three problems studied here: the double-
well quartic anharmonic oscillator, the quartic oscillator, and the non-Hermitian potential
problem V (x) = −(ix)3, recently investigated by Bender and Boettcher (1998). In all three
cases, we show that for any E, almost all of the scalet modes decay rapidly, with one surviving
mode converging to the Schrödinger equation, in the manner suggested by equation (12).

It is important to stress that we have not studied the translation variable dependence, b, of

the basic scalet modes,
−→B(�)(α, b;E, ε). Since the scalet equation matrix is analytic in b, we

expect these modes to be analytic inb as well, for finiteα. These modes (essentially) converge to
solutions of the Schrödinger equation, in the zero-scale limit, limα→∞

(
α
ν0

B(�)
0 (α, b;E, ε)

) →
�E(b). For unphysical energy values, if �E(b) is continuously differentiable, up to second
order, then it must be unbounded in (one or both of) the asymptotic limit(s), b → ±∞.
As noted, these unbounded, Schrödinger equation solutions satisfy the zero kinetic energy
conditions at all the (complex) turning points.

By way of contrast, the (appropriately truncated) �DCWT (x) representation, in which the
scalets generate the wavelet coefficients, represents both physical (bounded) and unphysical
(unbounded) solutions in terms of the bounded, dual basis functions, D( x−j2l

2l

)
. The

imposition of the TPQ (zero kinetic energy) conditions at the turning points, on such bounded
representations, creates an inconsistency that can only be satisfied by the physical solutions.
That is, a bounded approximation to an unbounded (unphysical) solution, cannot be expected
to satisfy all the TPQ conditions. Thus, combining the DCWT representation with the TPQ
conditions can discriminate between the physical and unphysical solutions.

However, it is also possible (and more likely) that the basic scalet modes, in the zero-
scale limit, generate piecewise differentiable, spline-like, solutions, �E(b), with discontinuous
(first-order) derivatives at the turning points. In this case, these asymptotically generated,
Schrödinger equation solutions, could be bounded (in the b → ±∞ limit), for unphysical Es.

Consider the two configurations f−(b) ≡ (c0 + c
(−)
1 b + c0b

2)e−b2
, for b < 0, and f+(b) ≡

(c0 +c(+)1 b+c0b
2)e−b2

, for b > 0. The first-order derivatives at the origin are: f ′
−(0) = c

(−)
1 and
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f ′
+(0) = c

(+)
1 . However, the second-order derivatives are f ′′

±(0) = 0. The scaling transform for

this function, in the zero-scale limit, becomes Sf (a, b = 0) = c0 + a(c
(+)
1 − c

(−)
1 )ν

(+)
1 + O(a3),

where ν
(+)
1 = ∫ +∞

0 dy yS(y) (recall ν1 ≡ 0). Thus, this corresponds to a simple scenario
in which the zero kinetic energy condition can be met at the turning point (i.e. b = 0), for
a bounded, spline-like configuration, with discontinuous first-order derivatives at the turning
point (f ′

−(0) �= f ′
+(0)).

This behaviour is suggested by the kinetic energy, ε-perturbation structure of the scalet
modes, as discussed in section 5. That is, to any finite order in ε, and α �= 0, the generated
expansion for the scalets will be bounded, as |b| → ∞. The generated expansion, to any finite
order in ε, is analytic in b. Thus, as in the truncated DCWT analysis, we expect the application
of the TPQ conditions, on the ε-perturbative, kinetic energy scalet expansion, will pick out the
physical solution (provided it is implemented at the appropriate scale). The details of this are
not discussed here.

1.4. Result no 4. On the complex extension of DCWT

Since we will be analysing �(x), at the complex turning points, it is important to assess the
suitability of the DCWT representation within the complex x-plane. The argument presented
below is also relevant in determining the conditions under which equation (10) holds, for
complex b. That is, although the µ�(α, b) scalets can be analytically continued onto the
complex b-plane, they do not necessarily converge to �(b), in the small-scale limit.

The DCWT representation corresponds to a particular scaling transform of the
wavefunction, S2�(a, x) = 1

ν

∫ dξ
a
S2(

ξ−x

a
)�(ξ), where the scaling function, S2, is determined

by the dual and mother wavelet functions (as reviewed in the following section). At appropriate
points (as defined below), the zero-scale limit recovers the wavefunction, lima→0 S2�(a, x) =
�(x).

At finite scales, a = 2L, for the dyadic case, we have (refer to equation (4))

S2�(2L, x) = 1

ν

+∞∑
l=L

+∞∑
j=−∞

wl,j

1√
2l

D
(
x − j2l

2l

)
. (13)

Assuming that S2 is well behaved (i.e. bounded along the real x-axis, analytic everywhere,
and ν ≡ ∫

dx S2(x) �= 0), the derivations given by HM (1998a, b, 1999) show that so long as
�(x) is entire (and bounded along the real axis), then the DCWT representation is appropriate
within the complex x-plane. This is because S2�(a, x) will be analytic in α = 1

a
and x.

The same is true for all turning points lying within the widest, infinite strip, parallel to the
real axis, SA, within which the wavefunction is analytic.

The more general case, allowing for pole or branch cut singularities at the boundary of
SA, is more complicated. A brief analysis is presented in appendix A showing under what
conditions one can expect the DCWT representation to converge to �(x), for x /∈ SA.

In this work, we deal only with potential problems for which the Schrödinger equation
solutions are entire functions.

2. Overview

In this section we make explicit the relevance of dual-wavelet analysis for singular perturbation
problems. This comprehensive discussion will serve to emphasize the basic wavelet philosophy
that they define a multiscale process for analysing and reconstructing the local structures
of a configuration. Wavelets connect the large-scale structure to the small-scale (transient)
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behaviour of the system, in the neighbourhood of a given point. This large–small scale
interaction is most efficient at the turning points. We review the basic wavelet relations in
the following subsection.

The wavelet representation’s effectiveness (i.e. convergence properties, etc) is dictated by
the underlying scaling transform representation. This motivates defining scaling transform
representations for the Schrödinger equation. We can do so, in terms of a closed (and thereby
exact) formulation, by working within the class of problems corresponding to bound state,
rational fraction, potentials. The multiscale dynamics of the system (i.e. how large- and small-
scale features interact) is revealed through the scalet equation. Its dimension is equal to the
total number of (complex) turning points. Further justification for first focusing on the scalet
equation is that, for a large class of mother wavelet functions, the associated wavelet transform
(which defines the coefficients of the signal (�)-wavelet expansion, �DCWT in equation (4)),
can be defined as a superposition over the scalets. We discuss all of the above, including
the derivation of the scalet equation, in subsection 2.2. Additional properties of the scaling
transform representation are discussed in appendix B.

An important feature of the scalet equation is that kinetic energy (ε-perturbation)
expansions are analytic (regular). We motivate this through a discussion of the associated
moment equation representation for the Schrödinger equation. We give the zeroth-order form
for both the ME solution, and the scalet equation solution. In both of these, the zeroth-order
contribution of all the (complex) turning points is immediate. All of this is presented in
subsection 2.3.

Finally, in subsection 2.4 we emphasize the initial-value nature of the scalet equation, and
define various basic scalet solutions.

2.1. Singular perturbation theory and wavelet analysis

One of the most challenging types of problems in physics are those involving strong coupling
interactions. Usually, these require singular perturbation analysis (Bender and Orszag 1978),
because the physical solutions manifest important small-scale transient, behaviours, and,
consequently, the interplay between large- and small-scale ‘dynamics’ becomes important.
Various multiscale methods have been developed to tackle most of these kinds of problems,
with varying success.

Over the previous 16 years, since the seminal work of Grossmann and Morlet (1984),
wavelet analysis has emerged as a general multiscale approach suitable for addressing many
of these singular-perturbation–strong-coupling problems. The primary reason for this is that it
involves an explicit space- (b)–scale- (a) dependent basis expansion, where the basis functions
are the affine map transforms of a chosen dual function, D( x−b

a
). For a given configuration,

�, its wavelet decomposition involves the superposition over all D( x−b
a

) basis functions, for
arbitrary scale (a > 0) and translation (|b| < ∞) values. For the continuous wavelet transform
(CWT) case, the corresponding signal(�)–wavelet inversion formula is given by (HM 1998a, b)

�(x) = 1

ν

∫ +∞

0

da

a5/2

∫ +∞

−∞
dbD

(
x − b

a

)
W�(a, b) (14)

where ν �= 0 (defined below), and the basis expansion coefficients, W�(a, b), correspond to
the wavelet transform:

W�(a, b) = 1√
a

∫ +∞

−∞
dξ W

(
ξ − b

a

)
�(ξ) (15)

where the mother wavelet, W , must satisfy certain basic conditions. These follow from the
basic requirement that both D and W generate a scaling function, S, which is bounded,
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with a non-zero integral, ν ≡ ∫
dx S(x) �= 0, and otherwise well behaved. In the Fourier

representation, the relation between all three functions becomes (HM 1998a, b):

−k∂kŜ(k) =
√

2πD̂(k) Ŵ(k). (16)

From this, all of the basic properties for W can be derived. The most important of these
is that Ŵ(0) = 0. Although it is not necessary for the dual function to be a mother
wavelet, it can be taken as such. One popular choice is the Mexican hat mother wavelet
Wmh(x) = −Nmh∂

2
x e−x2/2, where Nmh = 2√

3
√
π

.

The scaling function is very important. For any dual-wavelet pair that generate the same
scaling function, the convergence properties of the signal–wavelet inversion formula, with
respect to the scale variable integration, are unchanged. In order to clarify this, define the
scaling transform

S�(a, x) ≡ 1

ν0

∫ +∞

−∞

db

a
S

(
x − b

a

)
�(b). (17)

Clearly, one can recover the wavefunction through the zero-scale pointwise convergent (at a
given translation point, x), asymptotic limit relation

lim
a→0

S�(a, x) = �(x). (18)

This defines a particular representation for the dirac distribution, lima→0
1

aν0
S((x − b)/a) =

δ(x − b).
This pointwise convergent character is also inherent to equation (14), since one can derive

it directly from equation (18) (HM 1998a, b):

S�(a, x) = 1

ν

∫ +∞

a

dav
av5/2

∫ +∞

−∞
dbD

(
x − b

av

)
W�(av, b). (19)

Thus, the signal–wavelet inversion formula (i.e. equation (14)) is implicitly pointwise
convergent, in the above sense, and represents a multiscale resummation process proceeding
from the largest scale (a = ∞) to the smallest (a = 0). That is, equation (14) is not meant to
suggest that it is a global, uniformly convergent, basis expansion representation. Instead, it is
to be used to recover the local properties of the configuration �, near the point x, through a
multiscale process that samples over smaller and smaller scale contributions.

The non-uniformity of the (zero-scale) convergence characteristics of equation (19) is
further evidenced by the fact that S�(a, x) converges fastest at the inflection points of the
configuration, ∂2

x�(xi) = 0, provided the scaling function satisfies ν1 = ∫
dx xS(x) = 0.

This immediately follows from a small-scale asymptotic expansion of the scaling transform
(i.e. perform the change of variables y = x−b

a
):

S�(a, x) = �(x) +
a2ν2

2ν0
∂2
x�(x) + O(a3). (20)

If x �= xi , then S�(a, x) = �(x) + O(a2). If x = xi , the convergence is at least O(a3).
Instead of the complicated two-dimensional integration, CWT representation, one can

work with an exact discretization of it, to be referred to as DCWT. This is made possible by
the subset of affine maps corresponding to the A-adic scale and translation values: a = a0ρ

l ,
and b = j × f a0ρ

l , for −∞ < l, j < +∞, and ρ > 1. From a moment quantization
perspective (without explicitly introducing ‘frames’), HM derived the corresponding (DCWT)
signal–wavelet inversion formula

�(x) = 1

ν̃

+∞∑
l=−∞

+∞∑
j=−∞

D
(
x − f a0jρ

l − δl[x]

f a0ρl

)
1√
ρl

W�(ρl, f a0jρ
l + δl[x]) (21)
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where x is arbitrary (continuous), and δl[x] is the residual amount, at scale ρl , satisfying the
equation x = nl[x]ρl +δl[x], for an optimal integer value, nl[x]. Note that liml→−∞ δl[x] = 0,
and ∂xδ[x] = 1, except at x = jρl , where the residual is discontinuous.

The DCWT (A-adic) inversion formula is valid, so long as the dual-wavelet pair generate
a scaling function, S2, that satisfies (in terms of the Fourier transform)

Ŝ2(k) − Ŝ2(ρk) =
( +∞∑

j=−∞
D(j) eifjk

)
Ŵ
(

k

a0

)
(22)

where ν̃ ≡ ∫
dx S2(x) �= 0.

For the dyadic case, ρ = 2 (a0 = f = 1), working with the Mexican hat mother wavelet,
and dual (i.e. Dmh(x) = Wmh(x)), one obtains the DCWT inversion relation (HM 1998a, b)

�(x) = 1

3.427

+∞∑
l=−∞

+∞∑
j=−∞

Wmh

(
x − j2l − δl[x]

2l

)
1√
2l

Wmh�(2l , j2l + δl[x]). (23)

This compares favourably with Daubechies’ (1991) frame-based analysis

�(x) ≈ 1

3.410

+∞∑
l=−∞

+∞∑
j=−∞

Wmh

(
x − j2l

2l

)
1√
2l

Wmh�(2l , j2l). (24)

In our numerical implementation of the TPQ-DCWT method, instead of (second-order)
differentiating the DCWT inversion formula, with respect to x (so as to calculate the kinetic
energy at the turning points), it will be more convenient to work with the DCWT inversion
relation for the second-order derivative configuration, ∂2

x�(x). In this case, we simply have

∂2
x�(x) = 1

3.427

+∞∑
l=−∞

+∞∑
j=−∞

Wmh

(
x − j2l − δl[x]

2l

)
1√
2l

Wmh�
(2)(2l , j2l + δl[x]) (25)

where

Wmh�
(2)(a, b) = 1√

a

∫
dξ Wmh

(
ξ − b

a

)
∂2
ξ �(ξ). (26)

As argued in the introduction, for the one-dimensional Schrödinger equation
representation (i.e. equation (1)), there are two types of inflection points: nodal points, xn,
and turning points, τ�(E). Since the latter are known, a priori, as functions of the energy, E,
they become the more convenient local objects around which to implement a TPQ analysis.
Since some of these turning points will be complex, the residual term, δl[τ ], will absorb the
imaginary component of the complex turning point, τ .

There are additional, important relations, for the scaling transform. These are reviewed
in appendix B.

2.2. The scalet equation representation

The scalets can be used to either generate the wavefunction directly, through pointwise
converging approximations (i.e. equation (10)), or generate the wavelet transforms, which in
turn define the expansion coefficients in the �DCWT representation (i.e. equation (4)). As
discussed in the previous section, the �DCWT representation implicitly generates another
scaling function, S2 (i.e. equation (22)), different from that used to define the scalets, S

(and not necessarily identical to that in equation (16)). The convergence properties of the
S2-based scaling transform, with respect to recovering �, may be better (i.e. faster) than



Scalets, wavelets and (complex) turning point quantization 3587

those associated with the scaling transform for S (which are, in fact, the scalets themselves).
Beyond these practical advantages, the use of the scalets to generate �DCWT also gives us a
basis representation for approximating the properties of the wavefunction in the vicinity of any
chosen point. This is not possible in terms of the ‘pointwise convergent’ application of the
scalets (equation (10)), which only gives us numerical estimates for �. However, within the
kinetic energy, ε-expansion representation discussed in section 5, we can generate localized
scalet-basis configurations, with which to represent the local structure of the wavefunction.
This approach is under investigation.

The scalet equation (i.e. equation (7)) is derived by first generating the scalet moment
equation, which corresponds to the Schrödinger equation’s representation in terms of the
µp(a, b)s, for p � 0. This scalet moment equation is linearly dependent on the first 1 + ms

scalets, {µ�(a, b)|0 � � � ms}, and can be transformed into a differential relation that relates
scalets at one scale to scalets at another scale. One of the important features of the scalet
representation is that kinetic energy expansions are analytic. This is already manifested at
the moment equation level, which also involves the turning points. We outline the theoretical
structure of all of these issues in the following subsections.

2.2.1. Scalets as pointwise generators of �. Given the importance of the scaling
transform within wavelet analysis, it is then reasonable to emphasize the transformation of
the Schrödinger equation into a scaling transform representation. Consider any bound state,
rational fraction, potential problem,

V (x) =
∑T

i=0 Nix
i∑B

j=0 Djxj
(27)

where 1 + ms ≡ max{T ,B}. As emphasized in the introduction, this number represents the
total number of all turning points, including those in the complex plane. Let us choose a
scaling function of the form S(x) = e−Q(x), where Q(x) is an appropriate polynomial. We
can then transform the associated Schrödinger equation into a set of coupled, linear, first-order
differential equations with respect to the scalet configurations (i.e. equation (7), HM 1997,
1998a, b, 1999, HMBB 2000):

∂α




µ0(α, b)

.

.

µms
(α, b)


 =




M0,0(α, b;E, ε), . . . ,M0,ms
(α, b;E, ε)

. . .

. . .

Mms,0(α, b;E, ε), . . . ,Mms,ms
(α, b;E, ε)






µ0(α, b)

.

.

µms
(α, b)


 (28)

where α ≡ 1
a

, and 0 � � � ms . As previously noted, we will interchange the notation
‘µ�(α, b)’ and ‘µ�(a, b)’, depending on the scale regime of interest (i.e. a = ∞, or a = 0,
respectively).

The scalet expressions, µ�(α, b), are so designated, because they are, essentially,
proportional to particular scaling transforms of some derivative of the wavefunction. Thus,
µ�(a, b) = ∫

dx x�S(x/a)�(x + b) = a1+�
∫

dx
a

(
x−b
a

)�
S( x−b

a
)�(x). If ν� = ∫

dx x�S(x) �=
0, thenµ�(a, b) is proportional to the scaling transform of� with respect to the scaling function
x�S(x). If ν� = 0, then from the zero-scale asymptotic expansion

µ�(a, b) = a1+�
∞∑
q=0

aqν�+q

q!
∂
q

b �(b) (29)
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one obtains

lim
a→0

q∗
� !µ�(a, b)

a1+�+q∗
� ν�+q∗

�

= ∂
q∗
�

b �(b) (30)

where q∗
� corresponds to the smallest non-negative integer for which ν�+q∗

�
�= 0. Thus, in the

zero-scale limit, the µ�(a, b) configuration is proportional to the S-scaling transform of the
∂
q∗
�

x �(x) configuration.
The scalet equation is to be regarded as an initial-value problem. Specification of the

infinite scale, scalet configurations, µ�(α = 0, b), and energy parameter, E, allow one to
generate the corresponding scalet solution within the entire space-scale domain, {(α, b)|0 �
α < ∞,−∞ < b < +∞}. The µ�(0, b) depend, linearly, on the infinite scale, zero translation
(b = 0) scalets, which are simply the ordinary power moments, µ� ≡ ∫

dx x��(x). This is
further discussed in subsection 2.4.

In the works of HM (1997, 1998a, b, 1999), they exploited the initial-value nature of
the scalet equation in order to obtain pointwise converging approximations to the physical
wavefunction. They used moment quantization methods (described below) to solve for the
physical µ�s, and the energy. They then integrated the scalet equation, and made use of the
zero-scale asymptotic relations (i.e. equation (30)), to approximate the wavefunction. Excellent
results were obtained, for a variety of rational fraction potentials.

When one performs this type of scalet equation analysis, one is directly testing the
effectiveness of the underlying scaling function, S(x) = e−Q(x), in approximating the physical
solution.

It is important to emphasize that the scalet equation involves the translation variable, b,
as a parameter. Thus, for any fixed b, one is generating the scalet solution as a function of α.
One can reformulate the scalet equation as a partial differential equation in α and b. However,
we prefer the simplicity of the current formulation. In keeping with this, we do not explicitly
study the b-dependent behaviour of the scalet solutions. We have assumed (as is the case for
the physical solution), that the general scalet solution, for finite α, is analytic in b (i.e. the
scalet matrix elements will always be polynomials in b). We do focus on the behaviour of the
(basic) scalet solutions in the asymptotic α → ∞, or zero-scale limit.

2.2.2. Scalets as generators of the wavelet transform. One can also use the scalet equation
in order to generate the wavelet transform coefficients for a mother wavelet of the form
W(x) = P(x) e−Q(x), where P(x) is an appropriate polynomial. In this case, once the
desired dual function, D(x), is prescribed, the corresponding scaling function, S2, satisfying
equation (22), will be very different from S = e−Q(x) (which now becomes the ‘generator’ for
the chosen mother wavelet).

For mother wavelets of the above type, the wavelet transform becomes a superposition
over the scalets:

W�(a, b) =
ms∑

�v=0

C�v (a, b)µ�v (a, b) (31)

involving known coefficient functions, C�v (a, b). For the Mexican hat wavelet transform, one
has

Wmh�(α, b) = Nmh

√
α
(
µ0(α, b) − α2µ2(α, b)

)
(32)

where µ�(α, b) = ∫
dx x� e−(αx)2/2�(x + b). For the second-order derivative, ∂2

x�(x), the
corresponding wavelet transform is

Wmh�
(2)(α, b) = −Nmhα

5/2
(
3µ0(α, b) − 6α2µ2(α, b) + α4µ4(α, b)

)
. (33)



Scalets, wavelets and (complex) turning point quantization 3589

2.2.3. The scalets’ moment equation. The Schrödinger equation, for rational fraction
potentials, can be easily transformed into a scalet equation. One must first obtain a moment
equation for all the scalets, µp(α, b), p � 0 (not just the first 1+ms). We outline the essentials
by first focusing on the infinite-scale, zero-translation, scalets (i.e. theµps, or power moments).

Knowledge of the physical power moments defines an implicit multiscale analysis;
although it is not as efficient as the scalets in probing small-scale structures. For bounded,
physical, configurations, the Fourier transform will generally exist and be analytic,

�̂(k) = 1√
2π

∫
dx e−ikx�(x) (34)

defining the k-space power series

�̂(k) = 1√
2π

∞∑
p=0

(−ik)p
µp

p!
. (35)

This is effectively an expansion in inverse powers of a basic length scale, k ≈ O( 1
length ). As

the order of the Fourier expansion increases, one is probing over smaller and smaller length
scales. However, this expansion is not too efficient for very small scales, since large moment
orders are required, together with high-precision numerical capabilities (in dealing with the
associated large degrees, xp). Nevertheless, working with the power moments leads to the
more efficient scalet representation.

For the class of problems identified, we can transform the Schrödinger equation into a
finite-difference, recursive relation for the µps. It takes on the form (Handy and Bessis 1985,
Handy et al 1988a, b)

µp =
ms∑
�=0

Mp,�(E, ε)µ� (36)

where the readily determinable coefficients, Mp,�(E, ε) will be rational fractions in E, and
polynomially dependent on ε. They satisfy the ‘initial’ conditions M�1,�2(E, ε) = δ�1,�2 , for
0 � �1, �2 � ms . The independent moments, {µ�|0 � � � ms} are referred to as the missing
moments. The missing moments are explicitly ε independent; whereas the other, dependent,
moments are explicitly ε dependent.

For concreteness, consider the quartic potential problem −ε∂2
x�(x) + x4�(x) = E�(x).

For the physical solution, we can integrate both sides of this equation by xp, obtaining the ME
equation

µp+4 = Eµp + εp(p − 1)µp−2 (37)

for p � 0. The missing moments are {µ0, µ1, µ2, µ3}. Only the dependent (non-missing)
moments acquire an ε dependence (i.e. actually, all the moments of order six and higher acquire
an explicit ε dependence).

In general, for any rational fraction potential, the form of the above relations persists. For
the general, rational fraction, bound state potential problem

−ε∂2
x�(x) +

∑T
i=0 Nix

i∑B
j=0 Djxj

�(x) = E�(x) (38)

upon multiplying both sides by the denominator polynomial, and integrating with respect to
xp, one obtains the ME relation

−ε

B∑
j=0

Dj(p + j)(p + j − 1)µp+j−2 +
T∑
i=0

Niµp+i = E

B∑
j=0

Djµp+j (39)
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where p � 0. The highest-order moment is given by p + max{T ,B}, or 1 + p + ms , where
1+ms = max{T ,B}. This is also the degree of the polynomial relation derived from the turning
point condition V (τ�) = E. Upon isolating the highest moment-order term in equation (39),
one obtains the corresponding, recursive, ME relation, as symbolized by equation (36).

For future reference, in connection with M(α, b;E, ε)s ε dependence (i.e. equation (28)),
it is important to understand which of the moments are explicitly ε dependent. To this extent,
we have

Lemma 1. The maximum moment order m∗, for which µm∗ is ε independent is m∗ =
ms + 2,ms + 1,ms , for B = 0, 1,� 2, respectively.

Proof. From equation (39), the moments acquire a polynomial dependence in ε. The first
1 + ms moments (the missing moments) are ε independent. For the case B = 0 (polynomial
potential, hence T = 1 + ms) the moments µms+1 and µms+2 (i.e. p = 0, 1 in equation (39)),
are also ε independent. If B = 1, only µms+1 is ε independent. If B � 2 then µms+1 takes on
an ε dependence. �

Lemma 2. The moments µm∗+1 through µ3+m∗+ms−B will be of first order in ε.

Proof. In general, from equation (39), we see that only the kinetic-energy-related terms will
affect the degree to which ε contributes to a particular moment. So long asp+B−2 � m∗, none
of the kinetic energy moments (i.e. the ε terms in equation (39)) will be dependent on ε, and the
generated moments, µp+ms+1, will acquire, at most, an ε dependence. Thus, p � 2 + m∗ − B,
and the generated moments (i.e. µp+ms+1) are µ�3+m∗+ms−B . For the problems considered here,
where B = 0, the moments µms+3, . . . , µ2ms+5 will be of degree one in ε. �

One can quantize the energy within the ME representation in equation (39). This is referred
to as moment quantization. Various procedures have been proposed by Blankenbecler et al
(1980), Killingbeck et al (1985), Handy and Bessis (1985), Handy et al (1988), Fernandez
and Ogilvie (1993), Handy (1996), Tymczak et al (1998a, b) and HMBB (2000). However,
the methods of Handy and Bessis, and Handy et al define an affine map invariant variational
procedure that yields converging lower and upper bounds to the energy, once the signature
properties of the wavefunction are given. This was used to solve the difficult, singular
perturbation, quadratic Zeeman effect for strong magnetic fields. This further suggests the
relevance of MQ methods to wavelet analysis, and singular perturbation theory. However,
with the exception of the MRF representation methods developed by Handy (1996), Tymczak
et al (1998a, b) and HMBB (2000), none of the other formulations enabled the generation of
the wavefunction.

A similar formalism, as given above, applies for the scalets, µp(α, b), p � 0. To derive
their ME relation, one translates the Schrödinger equation by an amount b: [−ε∂2

x + V (x +
b)]�(x + b) = E�(x + b). Since the scalets involve the scaling function e−Q(x), we define the
configuration :a,b(x) ≡ e−Q(x/a)�(x + b), and substitute :a,b for �(x + b). The resulting
differential equation for : is

−ε
(
∂2
x + 2αQ′(αx)∂x + α2[(Q′(αx))2 + Q′′(αx)]

)
:a,b(x) + V (x + b):a,b(x) = E:a,b(x).

(40)

Upon repeating the same steps as followed in deriving the ME relation for the µps, one
obtains the moment equation for the moments

∫
dx xp:a,b(x) = µp(a, b), which becomes

the moment equation for the scalets:

µp(α, b) =
ms∑
�=0

Mp,�(α, b;E, ε)µ�(α, b) (41)



Scalets, wavelets and (complex) turning point quantization 3591

p � 0, andM�1,�2(α, b;E, ε) = δ�1,�2 , for 0 � �1, �2 � ms . Note that for notational simplicity,
we are not making explicit the E, ε dependence of the generated scalets.

So long as

lim
|x|→∞

Q′(x)√
V (x)

= 0 (42)

(or equivalently, e−Q(x) does not decrease more rapidly than the physical wavefunction) the
order of the finite-difference equation in equation (41), 1 + ms , remains the same as that for
the µp moments (HM 1997). We emphasize that this is not a necessary restriction, but is one
for which the eventual form of the scalet equation will become analytic in α and ε. If one
departs from this, then singular terms are introduced into the scalet equation. Such problems
have been dealt with by HM (1997) in their extension of the present formalism to the Bohr
atom case.

Let Q(x) = ∑JQ
j=0 <j x

j . Then, if Deg[Q] denotes the degree of Q, we have Deg[Q] =
JQ. The above asymptotic condition forces

Deg

[
(Q′)2

V

]
= 2(JQ − 1) − (T − B) � −1 (43)

or JQ−1 � T−B−1
2 . In generating the scalet ME relation (equation (41)), one must consider the

product of V (x + b)’s denominator polynomial and the kinetic energy terms in equation (40).
The respective degrees will be (upon multiplying by xp and integrating by parts): p + B − 2,
p + B + JQ − 2, p + B + 2(JQ − 1), and p + B + JQ − 2. The second and third expressions
satisfy: p + B + JQ − 2 � p + T +B−3

2 , and p + B + 2(JQ − 1) � p + T − 1. Hence all of
the original, first three expressions, are strictly less than p + max{T ,B} = p + ms + 1. This
confirms the previous assertion that the order of the scalet finite-difference ME relation, 1+ms ,
is not changed from that for the µps.

Let us rewrite the shifted potential as V (x + b) = ∑T
i=0 Ni(b)x

i/
∑B

j=0 Dj(b)x
j . The

kinetic energy terms to consider are

xp

( B∑
j=0

Dj(b)x
j

)
×




∂2
x:α,b(x)

2α

( JQ∑
j2=0

<j2 j2(αx)
j2−1

)
∂x:α,b(x)

α2

( JQ∑
j2,j3=0

<j2<j3 j2j3(αx)
j2+j3−2

)
:α,b(x)

α2

( JQ∑
j2=0

<j2 j2(j2 − 1)(αx)j2−2

)
:α,b(x).

(44)

The recursive scalet moment equation corresponds to

−ε

( B∑
j=0

Dj(b) (p + j)(p + j − 1)µp+j−2(α, b)

−2α
B∑

j1=0

JQ∑
j2=0

Dj1(b)<j2j2(p + j1 + j2 − 1)αj2−1µp+j1+j2−2(α, b)

+α2
B∑

j1=0

JQ∑
j2,j3=0

Dj1(b)<j2<j3 j2j3(α)
j2+j3−2µp+j1+j2+j3−2(α, b)
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+α2
B∑

j1=0

JQ∑
j2=0

Dj1(b)<j2 j2(j2 − 1)(α)j2−2µp+j1+j2−2(α, b)

)

+
T∑
i=0

Ni(b) µp+i (α, b) = E

B∑
j=0

Dj(b) µp+j (α, b) (45)

where p � 0. Note that one of the last two series expressions contain the highest-order
scalet moment, µp+Max{T ,B}(α, b) = µp+ms+1(α, b). When p = 0, the corresponding scalet
µms+1(α, b) is of first degree in ε (so long as α �= 0).

In general, the µ�(α, b), for 0 � � � ms will not have an explicit ε dependence. The
recursively generated scalets (i.e. µp+ms+1(α, b), p � 0), which are of first order in ε, must
satisfy:

ms �




p + B − 2

p + B + JQ − 2

p + B + 2(JQ − 1)

(46)

since then, the contributing kinetic energy terms will only involve scalets of (explicit) zeroth-
order form in ε. Thus 0 � p � Min{ms − B + 2,ms − B − JQ + 2,ms − B − 2(JQ − 1)}.
The smallest of these is the last one: p � ms − B + 2 − 2JQ. Accordingly, we have:

Lemma 3. The scalets, µms+1(a, b) through µ2ms+1−(B+2(JQ−1))(a, b), will be of first degree in
ε. (Proof given above.)

2.2.4. Deriving the scalet equation. We note that the scaling function will be of the form
S(x) = e−Q(x), where Q(x) = ∑JQ

j=0 <jx
j is a suitable polynomial. Accordingly, the

derivative ∂αS(αx) takes on the form: ∂αe−Q(αx) = (−∑JQ
j=0 j<jα

j−1xj )e−Q(αx). It follows
from the definition of µp(a, b) that

∂αµp(α, b) = −
JQ∑
j=0

j<jα
j−1µp+j (α, b). (47)

However, for 0 � p � ms , the µp+j (α, b) scalets depend on the first 1 +ms scalets. Thus, one
obtains a closed relation, which becomes the scalet equation:

∂αµp(α, b) = −
JQ∑
j=0

j<jα
j−1

( ms∑
�=0

Mp+j,�(α, b;E, ε)µ�(α, b)

)
(48)

or (p → �1)

∂αµ�1(α, b) =
ms∑

�2=0

M�1,�2(α, b;E, ε)µ�2(α, b) (49)

where M�1,�2(α, b;E, ε) ≡ −∑JQ
j=0 j<jα

j−1M�1+j,�2(α, b;E, ε). The details are worked out
for the explicit examples considered.

At moderately large scale values, one can use MQ methods on the scalets, in order to
quantize the energy. This was done for the Bohr atom, scalet analysis, of HM (1997). This
approach also requires the introduction of a ‘scalet equation’-type relation in the b-direction.
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2.3. Analyticity of kinetic energy perturbation in the scalet representation

As noted previously, one of the important features of the scalet equation representation is that
kinetic energy ε-expansions become analytic. This property is acquired from the underlying
moment equation relations. We summarize the relevant relation below.

2.4. Analyticity of the moment equation with respect to ε

The moment equation representation for the power moments, and the scalets, is explicitly
analytic (regular) in ε, the kinetic energy expansion parameter. One immediate indication of
the analyticity in ε is that the order of the finite-difference moment equation does not change
when ε = 0+ and ε = 0.

For simplicity, let us examine the zeroth-order, in ε, form of the ME relation for the quartic
oscillator. From equation (37) we obtain the fourth-order finite-difference equation

µ
(0)
p+4 = Eµ(0)

p (50)

which has the solution µ(0)
p = ∑3

�=0 A� (τ�)
p, where the A�s are arbitrary, and the τ�s are all

of the turning points of the problem, τ 4
� = E. For real E values, two of the turning points

are real, the other two pure imaginary. Symbolically, the configuration associated with these
moments, has the form �(0)(x) = ∑3

�=0 A�δ(x − τ�).
The above is true in general. The zeroth-order structure for the general ME relation is

(from equation (39))

T∑
i=0

Niµ
(0)
p+i = E

B∑
j=0

Djµ
(0)
p+j . (51)

The general solution for this is

µ(0)
p =

ms∑
�=0

A� (τ�)
p (52)

where
∑T

i=0 Niτ
p+i
� = E

∑B
j=0 Djτ

p+j
� , or (upon factoring out τp

� ), V (τ�) = E.
The symbolic, zeroth-order configuration corresponding to the µ(0)

p moments is

�(0)(x) =
ms∑
�=0

A�δ(x − τ�(E)) (53)

where the A�s are arbitrary. This expression, which becomes precise in the µp representation,
emphasizes the importance of all the turning points as the primary local structures around
which to develop a wavelet analysis.

2.4.1. Analyticity of the scalet matrix function with respect to α and ε. So long as
equation (42) is satisfied, the scalet equation matrix function, M(α, b;E, ε), will be analytic
in α, and ε, as is evident from equations (48) and (49).

It follows that the scalet equation solutions, µ�(α, b), are analytic in α. In fact, they will be
entire functions, with a power-series expansion of the form, µ�(α, b) = ∑∞

j=0 =�;j [ε, b]αj ,
where the =�;j [ε, b] coefficients are polynomials in ε and b. These expansion are absolutely
convergent. We expect that any reordering, so as to define the ε-expansion, µ�(α, b) =∑∞

j=0 µ
(j)

� (α, b)εj , will also be analytic in ε.



3594 C R Handy and H A Brooks

Given the symbolic form of the corresponding zeroth-order configuration in equation (53),
we can use it to obtain the form for µ(0)

p (α, b) = ∫
dx xp e−Q(αx)�(0)(x + b):

µ(0)
p (α, b) =

ms∑
�=0

A�(τ�(E) − b)pe−Q(α[τ�(E)−b]). (54)

In section 5.2 we prove this within the scalet representation.
In generating the ε expansion for the scalet equation solutions, it is important to know

M(α, b;E, ε)’s ε dependence. For polynomial potentials (B = 0), and Gaussian scaling
functions, Q(x) = x2/2, the scalet matrix function will be at most of first degree in ε. This
can be proved, as follows.

The largest moment-order term appearing in the scalet equation’s derivation (i.e. p = ms

in equation (47)) is µms+JQ(α, b). For the Gaussian scaling function, JQ = 2. For polynomial
potentials, B = 0. From lemma 3, the scalets µms+1(α, b) through µ2ms−1(α, b) will be of first
degree in ε. If we are to have ms + (JQ = 2) � 2ms − 1, then ms � 3. Thus we have:

Lemma 4. M(α, b;E, ε) = M(0)(α, b;E) + εM(1)(α, b;E), for polynomial potentials
(B = 0), Gaussian scaling functions (Q(x) = x2/2), and ms � 3. (Proof given above.)

By way of contrast, the non-Hermitian potential V (x) = −(ix)3, discussed in the last
section, has ms = 2. Its scalet matrix is of degree ε2.

2.5. The scalet equation: an initial-value problem

As previously noted, the scalet equation is to be regarded as an initial-value problem, in which
the infinite scale (α = 0) configurations have to be specified. For physical, bounded, �-
configurations, assuming that S(0) ≡ 1, we have (if b is real; if not, then through its analytic
continuation, x → x − b)

µ�v (α = 0, b) =
∫

dx x�v�(x + b) =
∫

dx (x − b)�v�(x) (55)

or

µ�v (α = 0, b) =
�v∑
j=0

(
�v

j

)
(−b)�v−jµj (56)

where µj ≡ µj(α = 0, b = 0).
Although the scalet equation generates solutions that do not necessarily correspond to

bounded � configurations, we will restrict the set of scalet solutions to those that satisfy the
above relations, at α = 0. Under this assumption, the general scalet solution takes on the form

−→µ (α, b) =
ms∑
�=0

µ�

−→B(�)(α, b;E, ε) (57)

where the basic scalet solutions,
−→B(�)(α, b), satisfy the scalet equation

∂α
−→B(�) = M(α, b;E, ε)

−→B(�) (58)

subject to the conditions (i.e. take µj ≡ δj,� in equation (56))

B(�)
�v
(α = 0, b) =

�v∑
j=0

(
�v

j

)
(−b)�v−j δj,� (59)
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or

B(�)
�v
(α = 0, b) =




0 if �v < �(
�v

�

)
(−b)�v−� if �v � �.

(60)

Knowledge of the basic scalet solutions, −→B (�)
, allows us to express the wavelet transform

in terms of a linear relation involving the µ�s (refer to equation (31))

W�(a, b) =
ms∑
�=0

µ� >�(a, b;E, ε) (61)

where >�(a, b;E, ε) = ∑ms

�v=0 C�v (a, b)B(�)
�v
(a, b;E, ε). This representation facilitates the

implementation of TPQ-DCWT, as indicated in the introduction.
An alternate set of initial conditions for the basic scalet solutions is to use the missing

moment relation µj = ∑ms

�v=0 A�v (τ�v (E))j , 0 � j � ms , which is invertible (i.e. µj ↔ A�v ).
This follows from equation (52) and the fact that the missing moments are explicitly ε-
independent (and hence automatically of zeroth order, µ(0)

� ≡ µ�, for 0 � � � ms).
One can impose that the basic scalet equation solutions satisfy (at α = 0) the conditions

A�v = δ�v,�, or µj = (τ�(E))j , for 0 � j � ms . That is, we can define another set of basic
scalet equation solutions

−→µ (α, b) =
ms∑
�=0

A�

−−→
ϒ(�)(α, b;E, ε) (62)

whose initial (α = 0) configuration is defined as (i.e. from equation (56))

ϒ
(�)
�v

(α = 0, b) =
�v∑
j=0

(
�v

j

)
(−b)�v−j (τ�(E))j (63)

which becomes

ϒ
(�)
�v

(α = 0, b) = (τ�(E) − b)�v . (64)

3. TPQ-scalet/wavelet analysis

We bring together the necessary components of the previous formalism which are essential to
the proposed TPQ-scalet/wavelet formalism. Its numerical implementation is discussed in the
next section.

In the previous discussion, we outlined the structure of the general scalet equation solution
and its linear dependence on the 1 +ms missing moment variables, {µ�|0 � � � ms}. We will
work with wavelet transforms that can be written as linear combinations of the scalets. These
in turn, define the coefficients of the DCWT signal(�)–wavelet expansion.

We will use the truncated dyadic Mexican hat DCWT representation in equation (23):

�L,J (x) = 1

3.427

Lmax∑
l=Lmin

+J∑
j=−J

Wmh

(
x − j2l − δl[x]

2l

)

× 1√
2l
Wmh�(2l , j2l + δl[x];E, ε, µ0, . . . , µms

) (65)
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where the Mexican hat wavelet transform coefficients are given in terms of the general

(Gaussian) scalet solution (i.e. µp(a, ξ) = ∫
dx xpe− x2

2a2 �(x + ξ))

Wmh�(a, ξ) = Nmha
−1/2

(
µ0(a, ξ) − 1

a2
µ2(a, ξ)

)
. (66)

These, in turn, are generated through the basic scalet solutions:

µ�v (a, ξ ;E, ε, µ0, . . . , µms
) =

ms∑
�=0

µ�B(�)
�v
(a, ξ ;E, ε). (67)

Therefore, in terms of the power moment variables, the Mexican hat wavelet transform becomes

Wmh�(a, ξ ;E, ε, µ0, . . . , µms
) =

ms∑
�=0

µ� wmh;�(a, ξ ;E, ε) (68)

where

wmh;�(a, ξ ;E, ε) = Nmha
−1/2

(
B(�)

0 (a, ξ ;E, ε) − 1

a2
B(�)

2 (a, ξ ;E, ε)

)
. (69)

We then impose the TPQ conditions

∂2
τ �L,J (τ�(E)) = 0 (70)

for 0 � � � ms . This results in a (1 + ms)-dimensional, determinantal equation

Det
(
((E,L, J )

) = 0 (71)

where

(�1,�2(E,L, J ) = 1

3.427
∂2
τ�1

( Lmax∑
l=Lmin

+J∑
j=−J

Wmh

(
τ�1(E) − j2l − δl[τ�1(E)]

2l

)

× 1√
2l
wmh;�2(2

l , j2l + δl[τ�1(E)];E, ε)

)
. (72)

The ∂2
τ�1

differentiation is done numerically. Good results are obtained, as discussed in the
following section. Alternatively, one can avoid such differentiation by working instead with
the DCWT representation for the second derivative of the wavefunction, �(2)(x) ≡ ∂2

x�(x).
As noted in the previous section, the Mexican hat wavelet transform for �(2)(x) is given

by

Wmh�
(2)(a, ξ) = −Nmha

−5/2

(
3µ0(a, ξ) − 6

a2
µ2(a, ξ) +

1

a4
µ4(a, ξ)

)
. (73)

For the problems considered here, the fourth-order scalet is dependent on the lower-order
scalets, µ4(a, ξ) = ∑ms

�=0 M4,�(a, ξ ;E, ε)µ�(a, ξ). In this case, we have

Wmh�
(2)(a, ξ ;µ0, . . . , µms

) =
ms∑
�=0

µ� w
(2)
mh;�(a, ξ ;E, ε) (74)

where

w
(2)
mh;�(a, ξ ;E, ε) = −Nmha

−5/2

(
3B(�)

0 (a, ξ ;E, ε) − 6

a2
B(�)

2 (a, ξ ;E, ε)

+
1

a4

ms∑
�v=0

M4,�v (a, ξ ;E, ε)B(�)
�v
(a, ξ ;E, ε)

)
. (75)
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We then have

�
(2)
L,J (x) = 1

3.427

Lmax∑
l=Lmin

+J∑
j=−J

Wmh

(
x − j2l − δl[x]

2l

)

× 1√
2l
Wmh�

(2)(2l , j2l + δl[x];E, ε, µ0, . . . , µms
). (76)

The TPQ conditions become

�
(2)
L,J (τ�(E)) = 0 (77)

which similarly reduce to a (1 +ms)-dimensional determinantal equation. This procedure also
works very well, as discussed in the following section.

4. Numerical implementation of TPQ-DCWT

In this section, we consider several important polynomial potentials in order to demonstrate the
capabilities, and limitations, of the proposed TPQ-DCWT method. The first two problems will
be the double-well quartic anharmonic oscillator potential, V (x) = Z2x2 + gx4, for Z2 < 0,
and the quartic potential, Z2 = 0. In the first case, for Z2 = −5, all the turning points (within
the energy interval considered, for the ground and first excited states) are real. For the quartic
potential, two of the turning points are real, the other two, pure imaginary.

For both of these potentials, the implementation of TPQ-DCWT resulted in good physical
estimates, with no (or very few) spurious solutions generated, in comparison to the TPQ-MRF
analysis by HMBB (which was limited to the double well case).

The third example corresponds to the non-Hermitian potential V (x) = −(ix)3, recently
considered by Bender and Boettcher (1998). For this case, a severe, exponentially growing
scalet mode, appears to affect the numerical implementation of the TPQ-DCWT method. We
can control the explosiveness of this mode by working in terms of complex scales; however,
this is still insufficient to yield any TPQ-DCWT estimates for the ground state. By comparison,
the TPQ-MRF method works exceptionally well for this problem (Handy (2000), despite the
generation of spurious states that can be filtered out by the method adopted by HMBB, and
reviewed in appendix C). In light of these numerical limitations, we defer consideration of this
problem to section 5.4, where the asymptotic properties of the scalet equation solutions are
discussed.

4.1. TPQ-DCWT analysis for the Z2x2 + gx4 potential

We derive the moment equation for the µps and the µp(α, b)s, followed by specifying the
form of the scalet equation for the generic quartic anharmonic oscillator problem (i.e. double
well, and quartic).

4.1.1. The moment equation: Z2x2 + gx4. Consider the quartic anharmonic double-well
oscillator,

−ε∂2�(x) + (Z2x2 + gx4)�(x) = E�(x) (78)

where Z2 < 0. In the limit Z2 → −∞, the ground and first excited state become degenerate.
The µp- moment equation is

gµp+4 = −Z2µp+2 + Eµp + p(p − 1)εµp−2. (79)
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It is a fourth-order finite-difference equation in which the energy, E, appears as a parameter.
The missing moments correspond to {µ�|0 � � � ms = 3}. Specification of these determines
all the other moments through the linear relation:

µ(p) =
ms∑
�=0

Mp,�(E, ε)µ(�) (80)

where M�1,�2(E, ε) = δ�1,�2 , for 0 � �1, �2 � ms . The Mp,�(E, ε) coefficients satisfy the
moment equation with respect to the p index, for fixed �, and are easily generated upon
imposing the given initial conditions.

As previously noted, the moments’ equation representation is regular with respect to the
kinetic energy perturbation parameter, ε. Such expansions are relevant for strong coupling
problems.

The zeroth order, ε = 0, structure of the moment equation is

gµ
(0)
p+4 = −Z2µ

(0)
p+2 + Eµ(0)

p (81)

and has the general solutionµ(0)
p = ∑ms

�=0 A�(τ�(E))p, where the A�s are arbitrary. The turning
point, energy-dependent, functions are defined by V (τ�(E)) = E, where V (x) = Z2x2 +gx4:

τ 2
� = −Z2

2
±
√
E − Vmin (82)

where Vmin = −Z4/4. We adopt the turning point function indexing:

τ�(E) =




−
√

− 1
2Z

2 +
√
E − Vmin � = 0

−
√

− 1
2Z

2 −
√
E − Vmin � = 1

+
√

− 1
2Z

2 −
√
E − Vmin � = 2

+
√

− 1
2Z

2 +
√
E − Vmin � = 3.

(83)

Note that τ0(E) = −τ3(E) and τ1(E) = −τ2(E). Physical bound states must satisfy
E > Vmin, therefore both τ0,3(E) will be real functions, so long as Z2 < 0 (we will be
investigating the case Z2 = −5). The other two turning point functions can be complex.

4.1.2. The scalet moment equation: Z2x2 +gx4. We now derive the moment equation for the
scalets, µp(α, b) = ∫ +∞

−∞ dx xpe−Q(αx)�(x + b), corresponding to an appropriate polynomial
function Q(x). We require that Q(0) = 1 and Q(±∞) = +∞.

Translating the Schrödinger equation by an amount b, we obtain

−ε∂2
x�(x + b) + (Z2(x + b)2 + g(x + b)4)�(x + b) = E�(x + b). (84)

Defining :(x) ≡ e−Q(αx)�(x + b), and making the appropriate substitutions we obtain

−ε
(
∂2
x + 2αQ′(αx)∂x + α2[Q′′(αx) + (Q′(αx))2]

)
:(x)

+g
(
Z2(x + b)2 + (x + b)4

)
:(x) = E:(x). (85)

From JWKB analysis, we know that the asymptotic form for the physical states is

�(x) → e−
√
g

3 |x|3 . Therefore, taking Q(x) = x2/2, satisfies the condition in equation (42)
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leading to scalets which are analytic in α, as well as ε. The corresponding moment equation
for the scalets is

µp+4(α, b) = −4bµp+3(α, b) − g−1[6gb2 + Z2 − εα4]µp+2(α, b)

−g−1[4gb3 + 2Z2b]µp+1(α, b)

+g−1[E − gb4 − Z2b2 − εα2(2p + 1)]µp(α, b)

+
ε

g
p(p − 1)µp−2(α, b) (86)

where p � 0. We can transform this linear, fourth-order finite-difference equation into the
representation

µp(α, b) =
ms=3∑
�=0

Mp,�(α, b;E, ε)µ�(α, b) (87)

p � 0, and M�1,�2 = δ�1,�2 , involving readily derivable M function coefficients which are
regular in all the dependent variables. The Mp,� satisfy the ME relation in equation (86),
with respect to the p-index, and are recursively generated upon imposing the aforementioned
initialization conditions.

4.1.3. The scalet equation: Z2x2 + gx4. The scalet equation is obtained from the relations
(which follow upon choosing Q(x) = x2/2)

∂αµp(α, b) = −αµp+2(α, b) (88)

or

∂αµp(α, b) = −α

ms=3∑
�=0

M̂p,�(α, b;E, ε)µ�(α, b) (89)

where

M̂p,�(α, b;E, ε) = Mp+2,�(α, b;E, ε) (90)

(M ≡ −αM̂).
Since all the scalets (p � 3) are linearly dependent on the {µ�(α, b)|0 � � � 3}, we can

limit the above differentiation with respect to these, generating the scalet equation:

∂α




µ0(α, b)

µ1(α, b)

µ2(α, b)

µ3(α, b)


 = −α




0, 0, 1 0

0, 0, 0, 1

M̂2,0,M̂2,1,M̂2,2,M̂2,3

M̂3,0,M̂3,1,M̂3,2,M̂3,3






µ0(α, b)

µ1(α, b)

µ2(α, b)

µ3(α, b)


 (91)

where the M̂ matrix is


0 0 1 0

0 0 0 1

− 1
g

(
εα2+

V (b)−E

)
−V ′(b)

g
− 1

g

(
m+6gb2

−εα4

)
−4b

4
b
g

(
εα2+

V (b)−E

)
− 1

g

(
3εα2−7b2m

−15gb4−E

)
− 1

g

(
4εbα4

−2bm−20gb3

)
− 1

g

(
m−10gb2

−εα4

)



. (92)
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Table 1. Ground and first excited state results for V (x) = −5x2 + x4.

Jmax Egr (Lmin, Lmax) E1(Lmin, Lmax)

5 −3.404 60 (−2, 0) −3.250 92 (−2, 0)
5 −3.414 01 (−2, 2) −3.260 66 (−2, 2)
7 −3.412 38 (−2, 2) −3.258 35 (−2, 2)

11 −3.40 952 (−2, 2) −3.249 28 (−2, 2)
−3.410 142 761a −3.250 675 362a

a Tymczak et al (1998a).

Table 2. Ground state results for V (x) = x4.

Jmax Egr (Lmin, Lmax)

5 1.061 76(−2, 4)
11 1.061 76 (−2, 4)

1.060 3621a

a Handy and Bessis (1985).

4.2. TPQ-DCWT results for the double-well potential, Z2 = −5, g = 1

We numerically generated the basic scalet solutions, −→B (�)
(α, b;E, ε) (i.e. refer to

equation (60)), according to a fourth-order Runge–Kutta procedure, and computed
the (Mexican hat) wavelet transform through equation (69). This defines the
�DCWT ≡ �L,J , representation in equation (65), on which the numerically differentiated
TPQ conditions are applied (equation (70)). Specifically, we set ∂2

τ �L,J (τ ) →(
�L,J (τ + δτ) + �L,J (τ − δτ) − 2�L,J (τ )

)
/δτ 2, where δτ = 10−3. Good results were

obtained, as indicated in table 1. No spurious energies were detected, as compared with
the results of HMBB.

Instead of numerically differentiating, we can adopt the DCWT representation for ∂2
x�(x),

as noted in equation (76), where the required wavelet transform coefficients are computed from
equation (73). The corresponding TPQ condition, in equation (77), duplicates the results in
table 1 (although in this case a few spurious solutions were generated).

4.2.1. TPQ-DCWT results for the quartic potential, Z2 = 0, g = 1. The same analysis can
be extended to the quartic potential problem case (Z2 → 0)

−ε∂2
x�(x) + x4�(x) = E�(x). (93)

The turning points are now real and imaginary:

τ�(E) =
{

±E1/4 for � = 1, 2

±iE1/4 for � = 0, 3.
(94)

We find that the implementation of the TPQ-DCWT condition yields good results. The
limited results cited in table 2 ensue from the TPQ-DCWT analysis as applied to the ∂2

x�(x)

formalism in equations (73)–(77).

5. Kinetic energy perturbation in the scalet representation

As we have repeatedly emphasized, the scalet equation matrix (for appropriate scaling
functions, S(x) = e−Q(x)), will be analytic in the inverse scale variable, α, as well as in
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the kinetic energy coupling strength, ε. The structure of the α power-series expansion does
not suggest any interesting zeroth-order features of immediate significance to the physical
system under study. However, the ε power series does have a very suggestive, and plausibly
relevant structure, impacting bound states. We have seen in the previous discussions that
the zeroth-order, in ε, structure of the power moment ME relation, suggests the symbolic
wavefunction configuration, �(0)(x) = ∑ms

�=0 A�δ(x − τ�(E)), for arbitrary E. Clearly, this
is to be interpreted as a superposition over bounded (i.e. Dirac distribution) configurations.
The immediate issues are: can we make this precise, and can we construct the physical, bound
state, solutions around such (suggestive) localized structures. The answer to both of these is
yes, as developed in this section. We outline the necessary theoretical form of this, although
its numerical implementation is still under study.

The scalet ε expansion is defined by −→µ (α, b;E, ε) = ∑∞
j=0 ε

j−→µ (j)
(α, b;E). We have

symbolically derived the zeroth order (in ε) form of the scalet configuration in equation (54).
We prove this explicitly within the scalet representation, for the V (x) = Z2x2 + gx4 case,
in the following subsection. The general case follows similarly (subsection (B)). We also
specify in subsection 5., the recursive structure of the ε-expansion, scalet configurations, and
indicate the nature of their localized form, both in α and b, around the respective turning
points. The implementation of TPQ, within such kinetic energy expansion representations, is
still under investigation. Nevertheless, the theoretical attraction of such, localized, scalet basis-
like configurations, is that they are well adapted to the given problem. This is not usually the
case in wavelet analysis, where the selection of an optimal dual-wavelet pair is not immediately
discernible for a given problem.

5.1. The zeroth-order scalet equation solution: Z2x2 + gx4

We show how to prove the zeroth-order form of the scalet equation solution, directly from the
scalet equation. We do this for the generic quartic anharmonic oscillator problem.

From equation (86) the zeroth-order moment equation becomes

µ
(0)
p+4(α, b) =

ms=3∑
�=0

1

�!
∂�
bK(b) µ

(0)
p+�(α, b) (95)

for p � 0, where K(b) ≡ g−1(E − V (b)). From this, and equation (90), it follows that

M̂2,�(α, b;E, 0) = M4,�(α, b;E, 0) = 1

�!
∂�
bK(b) (96)

and

M̂3,�(α, b, E, 0) =




1

ms!
K(b) ∂

ms

b K(b) for � = 0

1

(� − 1)!
∂�−1
b K +

1

�!ms!
∂�
bK(b) ∂

ms

b K(b) for 1 � � � 3.
(97)

We want to determine the eigenstates of the zeroth-order scalet equation. From the fourth-
degree nature of the potential,

4∑
�=0

1

�!
∂�
bK(b) (� = K(b + (). (98)

If we take ( = (τ�2(E) − b), then

4∑
�1=0

1

�1!
∂
�1
b K(b) (τ�2(E) − b)�1 = 0 (99)
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by definition of the turning point, and thus

3∑
�1=0

M2,�1(α, b, E, 0) (τ�2(E) − b)�1 = (τ�2(E) − b)4. (100)

If we multiply both sides by (τ�2(E) − b) we obtain the desired relation

3∑
�1=0

M3,�1(α, b, E, 0) (τ�2(E) − b)�1 = (τ�2(E) − b)5. (101)

From the preceding relations, one can easily verify that the eigenstates of the ε = 0 scalet
equation are 


E (�)

0 (α, b)

E (�)
1 (α, b)

E (�)
2 (α, b)

E (�)
3 (α, b)


 =




(τ�(E) − b)0

(τ�(E) − b)1

(τ�(E) − b)2

(τ�(E) − b)3


 e− α2

2 (τ�(E)−b)2
(102)

which satisfy ∂γ
−→E (�)

(γ, b) = −M̂(b, E, ε = 0)M−→E (�)
(γ, b), or

M̂(b, E, ε = 0)−→E (�)
(γ, b) = (τ�(E) − b)2−→E (�)

(γ, b) (103)

where γ ≡ α2/2. Therefore, the general solution is


µ
(0)
0 (α, b)

µ
(0)
1 (α, b)

µ
(0)
2 (α, b)

µ
(0)
3 (α, b)


 =

ms=3∑
�=0

A�




(τ�(E) − b)0

(τ�(E) − b)1

(τ�(E) − b)2

(τ�(E) − b)3


 e− α2

2 (τ�(E)−b)2
(104)

which is consistent with the symbolic configuration space solution �(0)(x) = ∑ms

�=0 A�δ(x −
τ�(E)), yielding the scaled and translated moments µ(0)

� (α, b) = ∫
dx x�e− α2

2 x2
�(0)(x + b) =∑ms

�2=0 A�2(τ�2(E) − b)�e− α2

2 (τ�2 (E)−b)2
.

It will be noted that the asymptotic b dependence of the zeroth-order scalet solutions is
different for α = 0 and α �= 0. In the zero-scale limit, these zero-order solutions, as functions
of Re(b), become proportional to Dirac measures sitting at Re(b) = Re(τ�).

5.2. A more general proof for µ(0)
p (α, b) = ∑ms

�=0 A�(τ�(E) − b)pe−Q(α(τ�(E)−b))

A more general argument can be structured as follows. From equation (45), we see that the
zeroth-order scalets must satisfy (as in equation (52))

µ(0)
p (α, b) =

ms∑
�=0

A�(α, b)(τ�(b;E))p (105)

for p � 0. The ‘shifted’ turning points must satisfy V (τ�(b;E) + b) = E, or τ�(b;E) =
τ�(E) − b.

The A�(α, b) coefficients are restricted by the defining relation ∂αµp(α, b;E, ε) =
−αµp+2(α, b;E, ε), for the case Q(x) = −x2/2. The generalization of this, for arbitrary
Qs, is immediate. We then obtain

ms∑
�=0

∂αA�(α, b)(τ�(b;E))p = −α

ms∑
�=0

A�(α, b)(τ�(b;E))p+2 (106)
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for p � 0. Therefore,

∂αA�(α, b) = −α(τ�(b;E))2A�(α, b) (107)

for 0 � � � ms . That is,

A�(α, b) = A�(b)e
− α2

2 (τ�(E)−b)2
(108)

hence

µ(0)
p (α, b) =

ms∑
�=0

A�(b)(τ�(E) − b)pe− α2

2 (τ�(E)−b)2
(109)

for p � 0. Finally, from the infinite-scale initial condition in equation (64), we obtain
A�(b) = A�.

5.3. Generating the scalet, kinetic energy, perturbative expansion

The scalet equation, for appropriate choices of scaling function, will have an analytic ε

expansion −→µ (α, b;E, ε) = ∑∞
j=0 ε

j−→µ (j)
(α, b;E). From lemma 4, the scalet equation matrix

will be of first order in ε (for polynomial potentials, B = 0, Gaussian scaling functions,
and ms � 3), facilitating the perturbative generation of the −→µ (j)

(α, b;E) configurations.
Thus, from the perturbative expansion of the scalet equation, we have ∂α

−→µ (j+1)
(α, b;E) =

M(0)(α, b;E)−→µ (j+1)
(α, b;E) + M(1)(α, b;E)−→µ (j)

(α, b;E), or(
∂α − M(0)(α, b;E)

)−→µ (j+1)
(α, b;E) = M(1)(α, b;E)−→µ (j)

(α, b;E) (110)

for j � 0. At α = 0, to all orders we impose the initial conditions:

−→µ (α = 0, b;E, ε) =
ms∑
�=0

c�
−→S(�)(0, b) (111)

where (from equation (57) and equation (62))

−→S(�)(0, b) =



−→B(�)(0, b) c� ≡ µ�

−−→
ϒ(�)(0, b) a c� ≡ A�.

(112)

However, these are automatically of zeroth order in ε, hence

−→µ (j)
(0, b;E) = −→

0 (113)

for all j � 1. The zeroth-order form of the scalet configuration, −→µ (0)
(α, b;E), was defined

in the previous subsections.
From the (assumed) boundedness properties of the scaling function, S(z) = e−Q(z), along

the asymptotic Re(z) → ±∞ direction, we have that

lim
| Re(b)|→∞

−→µ (0)
(α, b;E) = 0 (114)

exponentially fast. Similarly, for some sufficiently large Re(b), in the zero-scale asymptotic
limit we have

lim
a→0

−→µ (0)
(α, b;E) = 0 (115)

also exponentially fast.
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These properties are preserved by −→µ (j+1)
(α, b;E), for j � 0. The inductive argument

is immediate. If the right-hand side of equation (110) goes to zero, then −→µ (j+1)
(α, b;E) are

dominated by the zeroth-order modes of the scalet equation, which automatically satisfy the
above.

The exact structure of the −→µ (j+1)
(α, b;E)s is complicated and depends on the choice of

the polynomial,Q, and the nature of the turning points. However, the −→µ (0)
(α, b) configuration,

as a function of Re(b), corresponds to localized structures situated at the Re(τ�(E)) values.
At an arbitrary b ≈ τ�(E), one can have either exponentially growing or decaying behaviour,
as a → 0.

One of the objectives of using such kinetic energy expansions is to implement a TPQ
analysis in terms of them. At each of the turning points, τ�(E), the TPQ condition becomes
viable only at some moderately small scale, a�. If these scales are not too small, it may be
possible to work within a low-order ε-expansion, and generate good approximate values for
the quantized states. These issues are inherent to the scaling transform extremal scale analysis
reviewed in appendix B. As noted at the outset, the numerical implementation of this TPQ
analysis is under investigation.

6. Zero-scale asymptotic behaviour of the scalet solutions

In the introduction, we made reference to the fact that most of the scalet equation modes,
converge to the Schrödinger equation, in the zero-scale limit, regardless of the chosen energy
value. We prove this here in two ways. The first is to argue that compactly supported scalets (as
defined below) are asymptotic to the scalets, in the zero-scale limit. However, such compactly
supported scalets are definable for any bounded or unbounded solution of the Schrödinger
equation. Thus, it should be expected that most of the scalet solutions should converge to the
Schrödinger equation. The second approach is to work out the leading asymptotic form of the
scalet solutions, in the zero-scale limit. We do this for the generic quartic anharmonic oscillator,
as well as the non-Hermitian potential discussed earlier. In all of these cases, we confirm
the existence of a large number of scalet modes that converge to the Schrödinger equation;
thereby preventing a direct TPQ-scalet analysis, as argued in the introduction (although such
a procedure may work within the kinetic energy expansion representation discussed in the
previous section).

6.1. Convergence of scalet and Schrödinger solutions

An important argument in proving that (most of) the scalet solutions should converge to the
Schrödinger equation is to study the behaviour of the compactly supported scalets

µ(δ1,δ2)
p (a, b) ≡

∫ δ2

−δ1

dx xpe−Q(x/a)�(x + b). (116)

These exist, regardless of �’s behaviour at infinity (|x| → ∞), because they are defined on a
compact domain.

The µ(δ1,δ2)
p (a, b)s satisfy a moment equation that is identical, in structure, to that for

the scalets, except for the appearance of boundary terms. Thus, as in section 2.2.3, let
�(x) be an arbitrary solution (bounded or not) to the Schrödinger equation, for an arbitrary
energy value, E. We can translate the Schrödinger equation by an amount b, and work with
:a,b(x) ≡ e−Q(x/a)�(x+b). We then apply

∫ δ2

−δ1
dx xp, to both sides of the differential equation

for :a,b(x), after first multiplying by the denominator of the potential, V (x + b) ≡ PN(x+b)
PD(x+b) .
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The ensuing integration by parts generates the boundary terms

αxpPD(x + b)Q′(αx)e−Q(x/a)�(x + b)
∣∣δ2

−δ1
(117)

and

xpPD(x + b)∂x
(
e−Q(x/a)�(x + b)

)∣∣δ2

−δ1
− ∂x

(
xpPD(x + b)

)
e−Q(x/a)�(x + b)

∣∣δ2

−δ1
. (118)

Since both δ1,2 are fixed, as a → 0 the exponential factor dominates, and the
boundary terms go to zero. Thus the moment equation satisfied by µ−δ1,δ2

p (a, b),
is asymptotic to that satisfied by the µp(a, b)s, in the zero-scale limit. That is,
µ(−δ1,δ2)

p (a, b) = ∑ms

�=0 Mp,�(a, b;E, ε)µ
(−δ1,δ2)
� (a, b), in the zero-scale limit. We also note

that ∂αµ−δ1,δ2
p (α, b) = µ−δ1,δ2

p (α, b), exactly. Thus, the compact scalets satisfy a scalet-like
differential equation which is asymptotic to the original scalet equation (with the disappearance
of the boundary terms).

In the zero-scale asymptotic limit, the compact moments yield a pointwise recovery for
the underlying configuration. This follows from the standard argument:

µ(δ1,δ2)
p (a, b) = a1+p

∫ δ2/a

−δ1/a

dy ype−Q(y)�(ay + b) (119)

or

lim
a→0

µ(δ1,δ2)
p (a, b) → a1+p

∞∑
n=0

νn+pa
n

n!
∂n
b�(b). (120)

Thus, in the zero-scale limit we have

lim
a→0

(
n∗
p!µ(δ1,δ2)

p (a, b)

a1+p+n∗
pνp+n∗

p

)
= ∂

n∗
p

b �(b) (121)

where n∗
p was defined previously (equation (30)).

The preceding analysis strongly suggests that in the zero-scale limit, a subset of the
scalet solutions must become solutions of the Schrödinger equation. This is indeed verified
numerically. A leading-order JWKB analysis for the scalet equation also confirms this, as is
presented below.

6.2. Intermediate-scale behaviour of scalet equation: Z2x2 + gx4

Before delving into the asymptotic, zero-scale limit, analysis of the scalet equation solutions,
we outline an intermediate analysis for the quartic anharmonic oscillator class of problems.
This will help us obtain a better understanding of the behaviour of the scalet equation solutions.

It is possible to obtain some qualitative properties of the scalet equation for moderate scale
values. In order to do this, one should work with the generalized scaling transform expressions

U�(α, b) ≡ α1+�+n∗
� n∗

�!

ν�+n∗
�

µ�(α, b) (122)

(refer to equation (30)).
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We can convert the scalet equation into the U -representation. First, we note that
ν2ρ = (−∂s)

ρ
√

π
s

, for s = 1
2 . Accordingly, ν0 = ν2 = √

2π and ν4 = 3
√

2π . Thus we
have:




U0(a, b)

U1(a, b)

U2(a, b)

U3(a, b)


 = 1√

2π




µ0(a, b)

a
µ1(a, b)

a3

µ2(a, b)

a3

µ3(a, b)

3a5



. (123)

That is, n∗
� = {0, 1, 0, 1} (hence n∗

�! ≡ 1), for � = {0, 1, 2, 3}. We also have µ�(a, b) =
an∗

�+�+1ν�+n∗
�
U�(a, b).

Inserting this in the scalet equation (i.e. ∂α = −a2∂a)

−a2∂a(a
n∗
�+�+1ν�+n∗

�
U�(a, b)) =

ms∑
�v=0

M�,�v (a, b)a
n∗
�v

+�v+1ν�v+n∗
�v
U�v (a, b) (124)

or

−a2∂a
−→
U (a, b) = U(E, ε; a, b)−→U (a, b) (125)

where

U�1,�2(E, ε; a, b) =
([

M�1,�2(a, b)
a
n∗
�2

+�2

a
n∗
�1

+�1

ν�2+n∗
�2

ν�1 + n∗
�1

+ aδ�1,�2(n
∗
�1

+ �1 + 1)

])
(126)

and the U matrix is given by (the ensuing analysis is easier in terms of α)




1
α

0 − 1
α

0

0 3
α

0 − 3
α

α3

g

(
εα2+

V (b)−E

)
α
g
V ′(b) α

g

(
m+6gb2

+
3g
α2 −εα4

)
12b
α

− 4bα5

3g

(
εα2+

V (b)−E

)
α3

3g

(
3εα2−E

−7b2m−15gb4

)
α3

3g

(
4εbα4

−2bm−20gb3

)
α
g

(
m−εα4

+
5g
α2 −10gb2

)



. (127)

Empirically, for the double-well quartic anharmonic oscillator problem (Z2 = −5, g = 1)
one observes that as α becomes large, the basic scalet solutions (chosen either according to
equation (57) or equation (62)), regardless of the energy, generate U�(α, b)s that converge,
pointwise (at fixed b, α → ∞) to a solution of the Schrödinger equation, as indicated in
equation (30).

There are two phases to this convergence. The first is an abrupt (exponential) attraction
between U0 and U2, and U1 and U3. Once they become sufficiently close to each other, for the
respective pairs, the differences U0 −U2 and U1 −U3 will go to zero, in an algebraic manner,
consistent with the asymptotic expansion in equation (29).
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In order to determine the first phase of the asymptotic behaviour for the U�s we identify
the dominant terms of various matrix elements given above. These are

lim
α→∞ U →




1

α
0 − 1

α
0

0
3

α
0 − 3

α

εα5

g

α

g
V ′(b) −εα5

g

12b

α

−4bεα7

3g

εα5

g

4εbα7

3g
−εα5

g



. (128)

Upon subtracting the third row from the first, and the fourth row from the second, and
identifying the dominant terms, we obtain the asymptotic relations

∂α

(
U0 − U2

U1 − U3

)
= −




εα5

g
0

−4bεα7

3g

εα5

g



(
U0 − U2

U1 − U3

)
. (129)

Accordingly, we then have

lim
α→0

(U0(α, b) − U2(α, b)) = Ce− ε
6g α

6

(130)

and likewise for (U1(α, b) − U3(α, b)).
We can define the critical scale marking the onset of the mutually attractive behaviour of

the U�s:

ac =
(

ε

6g

)1/6

. (131)

For g = ε = 1, ac ≈ 0.74 (a = 0.64 for e−α6/6 = 10−1).
As α increases beyond the critical value 1

ac
, the various terms of the U� equation dominate

in accordance with the asymptotic expansion given in equation (29).

6.3. JWKB asymptotic analysis of the scalet equation: Z2x2 + gx4

We can implement a lowest-order JWKB analysis on the generic quartic anharmonic oscillator
scalet equations in order to confirm the dominant nature of the Schrödinger equation solutions,
in the zero-scale limit. We do so by first reducing the scalet equations to a fourth-order ordinary
differential equation. This is best done in terms of the M(α, b;E, ε) = αM̂(α2, b;E, ε),
representation, which converts the scalet equation into a differential expression in the variable
γ ≡ 1

2α
2, which we adopt below.

In order to facilitate the algebra, we rewrite equation (91) as

−∂γ




w

x

y

z


 =




0, 0, 1, 0

0, 0, 0, 1

A,B,C,D

F,G,H, I






w

x

y

z


 (132)

where (w, x, y, z) = (µ0(γ, b), µ1(γ, b), µ2(γ, b), µ3(γ, b)), (A,B,C,D) = (M̂2,0, . . .)

and (F,G,H, I) = (M̂3,0, . . .).
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From the first two relations we have y = −w′ and z = −x ′, thus we can reduce the above
to

(
w′′

x ′′

)
=
(
A,B,C,D

F,G,H, I

)
w

x

−w′

−x ′


. (133)

The first equation (i.e. w′′ . . .) involves both x and x ′. We want to find a relation relating
these two quantities to various derivatives of w; thereby generating one differential equation
for w. We do so by differentiating the first equation, twice, each time substituting the second
for x ′′. Thus,

w′′′ = (A′, B ′, C ′,D′) · (w, x,−w′,−x ′) + (A,B,C,D) · (w′, x ′,−w′′,−x ′′). (134)

We substitute for x ′′, obtaining

w′′′ = (A′, B ′, C ′,D′) · (w, x,−w′,−x ′) + (A,B,C, 0) · (w′, x ′,−w′′, 0)

−D
(
(F,G,H, I) · (w, x,−w′,−x ′)

)
(135)

or

w′′′ = (A′ − DF,B ′ − DG,C ′ − DH,D′ − DI) · (w, x,−w′,−x ′)
+(A,B,C, 0) · (w′, x ′,−w′′, 0). (136)

Repeating the same procedure, we now obtain

w′′′′ = (A′ − DF,B ′ − DG,C ′ − DH,D′ − DI) · (w′, x ′,−w′′,−x ′′)
+(A,B,C, 0) · (w′′, x ′′,−w′′′, 0)

+(A′′ − (DF)′, B ′′ − (DG)′, C ′′ − (DH)′,D′′ − (DI)′) · (w, x,−w′,−x ′)
+(A′, B ′, C ′, 0) · (w′, x ′,−w′′, 0). (137)

Again, we substitute for the x ′′ contribution, (B − D′ + DI)x ′′:

w′′′′ = (A′ − DF,B ′ − DG,C ′ − DH, 0) · (w′, x ′,−w′′, 0)

+(A, 0, C, 0) · (w′′, 0,−w′′′, 0) + (A′′ − (DF)′, B ′′ − (DG)′, C ′′

−(DH)′,D′′ − (DI)′) · (w, x,−w′,−x ′) + (A′, B ′, C ′, 0) · (w′, x ′,−w′′, 0)

+(B − D′ + DI)
(
(F,G,H, I) · (w, x,−w′,−x ′)

)
. (138)

Combining all the x, x ′ terms:

w′′′′ + Cw′′′ + [2C ′ − DH − A]w′′ + [DF − 2A′ + C ′′ − (DH)′ + (B − D′ + DI)H ]w′

+[(DF)′ − A′′ − (B − D′ + DI)F ]w = [B ′′ − (DG)′ + (B − D′ + DI)G]x

+[2B ′ − DG − D′′ + (DI)′ − I (B − D′ + DI)]x ′. (139)

We denote the left-hand side by
∑4

j=0 =1jw
(j).

Similarly, from equation (136), we have

w′′′ + Cw′′ + [C ′ − DH − A]w′ + [DF − A′]w = [B ′ − DG]x + [DI − D′ + B]x ′. (140)

We denote the left-hand side by
∑3

j=0 =2,jw
(j).

We can now solve for x and x ′:(
x

x ′

)
= 1

Det

(
>22,−>12

−>21, >11

)(∑4
j=0 =1,jw

(j)∑3
j=0 =2jw

(j)

)
(141)
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>i,j =




B ′′ − (DG)′ + (B − D′ + DI)G for i = 1 j = 1

2B ′ − DG − D′′ + (DI)′ − I (B − D′ + DI) for i = 1 j = 2

B ′ − DG for i = 2 j = 1

DI − D′ + B for i = 2 j = 2

(142)

and

( = >11>22 − >12>21. (143)

Substituting in the first of the two relations in equation (133), we obtain the desired
fourth-order differential equation

w′′ = (A,B,C,D) · (w, x[w′′′′, w′′′, w′′, w′, w],−w′,−x ′[w′′′′, w′′′, w′′, w′, w]) (144)

or

( × (w′′ − A w + C w′) = B

( 4∑
j=0

[>22=1,j − >12=2,j ]w(j)

)

+D

( 4∑
j=0

[>21=1,j − >11=2,j ]w(j)

)
, (145)

becoming (i.e. =2,4 ≡ 0)

( × (w′′ − A w + C w′) =
4∑

j=0

(
[(B>22 + D>21]=1,j − [B>12 + D>11]=2,j ]

)
w(j). (146)

The dominant coefficients for this differential equation are (i.e. using Mathematica)([
3072ε4b2

g4

]
γ 6 + · · ·

)
w(γ ) +

([
6144ε4b2

g4

]
γ 7 + · · ·

)
w′(γ )

+

([
3072ε3b2

g3

]
γ 5 + · · ·

)
w′′(γ )

+

([
128 ε2 Z

2b2

g3
+ 256

ε2b4

g2

]
γ 4 + · · ·

)
w′′′(γ )

+

([
32ε

Z2b2

g2
+ 64ε

b4

g

]
γ 2 + · · ·

)
w′′′′(γ ) = 0. (147)

We can now substitute the usual JWKB formalism w = eW , obtaining a fourth degree, in
W ′(γ ), equation (w(j) → (W ′)jeW ):

1 + 2γW ′(γ ) +
g

ε
γ−1(W ′(γ ))2 +

(
gZ2

24ε2
+
b2g2

12ε2

)
γ−2(W ′(γ ))3

+
g

4ε

(
gZ2

24ε2
+
b2g2

12ε2

)
γ−4(W ′(γ ))4 = 0. (148)

Upon setting r ≡ W ′/γ , the above transforms into the quartic polynomial expression
1 + c1γ

2r + c2γ r
2 + c3γ r

3 + c4r
4 = 0. The JWKB self-consistent asymptotic solutions
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follow from the three dominant term relations: (1) 1 + c1γ
2r = 0; (2) c3γ r

3 + c4r
4 = 0; and

(3) c1γ
2r + c3γ r

3 = 0. These result in the JWKB (lowest-order) asymptotic solutions:

W ′(γ ) =




− 1

2γ

−4ε

g
γ 2

±i
2ε

bg

√
6(

1 + Z2/2b2g
)γ 3/2

(149)

or (µ0(γ, b) ≡ w(γ, b) = exp(
∫

dγW ′(γ )))

µ0(γ, b) =




f1(b)√
γ

f2(b) exp

(
− 4ε

3g
γ 3

)

f±(b) exp

(
±i

4ε

5bg

√
6(

1 + Z2/2b2g
)γ 5/2

) (150)

where the f s correspond to b-dependent factors. Note that the W ′ ≈ − 1
2γ solution is made

possible by the fact that there are inverse γ -dependent coefficients in equation (148). That is,
we have a consistent asymptotic expansion, since even though W ′′ ≈ 2(W ′)2, W ′′′ ≈ 8(W ′)3,
etc, the inverse γ dependence of the cited coefficients allows us to ignore the nonlinear terms
in equation (148), with respect to generating the first asymptotic solution, as given above.

If c3 = b2g2

12ε2 (1 + Z2

2b2g
) > 0, and b real, rapidly oscillating solutions are introduced, to

lowest order. However, a first-order correction (to the lowest-order JWKB estimate) reveals
that there is a small exponential decay. Thus, taking r ≡ r(δ), where δ = 1 is to be treated as
a perturbation parameter, we can solve the equation

c1γ
2r(δ) + c3γ (r(δ))

3 + δ(1 + c2γ r
2 + c4r

4) = 0 (151)

for r(δ) = r0 + δr1 + O(δ2). We obtain the correction

W ′(γ ) = ±i
2ε

bg

√
6(

1 + Z2/2b2g
)γ 3/2 − g

4εc3
γ +

1

4γ
. (152)

For c3 > 0, the second term introduces an exponential decay for the corresponding µ0(γ, b)

expression.
From the preceding lowest-order JWKB analysis we can see that except for some

exponentially unbounded modes, all of the other scalet modes, except one, decay exponentially
to zero, in the small-scale limit. The non-exponentially decaying mode is that which imitates
the asymptotic behaviour of the physical solution (i.e. O( 1√

γ
)); although it is present for any

E. This behaviour confirms our assertion (in the introduction) that for any E, there exist scalet
solutions that converge pointwise (at fixed b) to solutions of the Schrödinger equation.

That is, for any E, we can find µ� values (i.e. the infinite-scale zero-translation scalets),
such that the corresponding scalet solution does not involve the exponentially growing mode.
For such solutions, the TPQ conditions are automatically satisfied, in the zero-scale limit. This
is why, a pure TPQ-scalet analysis cannot work (and we must use the scalets as the generators
for the wavelet transform coefficients in the �DCWT representation).
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6.4. JWKB asymptotic analysis of the scalet equation: V (x) = −(ix)3

We now consider the problem

−ε∂2
x�(x) − (ix)3�(x) = E�(x) (153)

recently studied by Bender and Boettcher (1998). They established that this non-Hermitian
potential admits bound states along the real axis. The asymptotic behaviour of the wavefunction

along the real axis is determined by the JWKB expression lim|x|→∞ �(x) = e± 2
√

i
5 x5/2

,
which dies off faster than the Gaussian. Accordingly, we can still work with µp(α, b) =∫

dx xpe− (αx)2

2 �(x + b), which will be analytic in α and b.
The µp(γ, b)-moment equation is readily obtainable as before (γ = α2/2):

µp+3(γ, b) = [−3b + 4iεγ 2]µp+2(γ, b) − 3b2µp+1(γ, b)

+[−b3 + iE − 2iεγ (2p + 1)]µp(γ, b) + iεp(p − 1) µp−2(α, b). (154)

There are three missing moments {µ�(γ, b)|0 � � � 2}; thus, ms = 2. The corresponding
scalet equation becomes (i.e. −∂γµp(γ, b) = −µp+2(γ, b))

−∂γ




µ0(γ, b)

µ1(γ, b)

µ2(γ, b)


 =


 0, 0, 1

A,B,C

D,F,G




µ0(γ, b)

µ1(γ, b)

µ2(γ, b)


 (155)

where A = −b3 + iE − 2iεγ , B = −3b2, C = −3b + 4iεγ 2, D = (−b3 + iE − 2iγ ε)(−3b +
4iεγ 2), F = −3b2(−3b + 4iεγ 2) + (−b3 + iE − 6iεγ ), G = (−3b + 4iεγ 2)2 − 3b2.

Note that the corresponding scalet equation matrix is now ε2 dependent (refer to the
conditions of lemma 4).

We can reduce these equations to one third-order differential equation for µ0(γ, b). First,
we take

µ1 = − 1

F
[∂γµ2 + Dµ0 + Gµ2] (156)

followed by substituting for µ1 in the second scalet equation:

−∂γ

(
− 1

F
[∂γµ2 + Dµ0 + Gµ2]

)
= Aµ0 − B

F
[∂γµ2 + Dµ0 + Gµ2] + Cµ2. (157)

Finally, we substitute the first scalet equation, µ2 = −∂γµ0:

∂γ

(
1

F
[−∂2

γ µ0 + Dµ0 − G∂γµ0]

)
= Aµ0 − B

F
[−∂2

γ µ0 + Dµ0 − G∂γµ0] − C∂γµ0 (158)

or

−µ′′′
0 +

(
F ′

F
− G − B

)
µ′′

0 +

(
G
F ′

F
+ D − G′ − BG + CF

)
µ′

0

+

(
−D

F ′

F
+ D′ − FA + BD

)
µ0 = 0. (159)

In terms of the dominant γ terms in the coefficients:

µ′′′
0 − 16ε2γ 4µ′′

0 − 64ε2γ 3µ′
0 − 20ε2γ 2µ0 = 0 (160)

or (via JWKB approximation, µ0 = eW )

(W ′)3 − 16ε2γ 4(W ′)2 − 64ε2γ 3W ′ − 20ε2γ 2 = 0. (161)
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This equation cannot be used to generate the anticipated W ′ ≈ − 1
2γ solution, since one would

have to include all higher-order derivatives of W ′. That is, since µ′′
0 = (W ′′ + (W ′)2)eW , etc,

and W ′′ = 2(W ′)2 for W ′ = − 1
2γ , etc, one would have to include the higher-order derivatives

in equation (161).
From equation (160), anticipating that µ0 → f γ ρ is a solution, we have

ρ(ρ − 1)(ρ − 2)γ ρ−3 − 16ε2ρ(ρ − 1)γ ρ+2 − 64ε2ργ ρ+2 − 20ε2γ ρ+2 = 0. (162)

Since γ ρ+2

γ ρ−3 → +∞, we see that balancing the last three terms gives us two possible solutions
(i.e. 16ρ(ρ − 1) + 64ρ + 20 = 0)

ρ =
{

− 1
2 , µ0(γ, b) → f γ−1/2

− 5
2 , µ0(γ, b) → f γ−5/2.

(163)

The third (asymptotic) solution can be obtained by balancing the first two terms in
equation (161), yielding

W ′ = 16ε2γ 4 (164)

or

µ0(γ, b) → f e
16ε2

5 γ 5
. (165)

The presence of this mode will seriously impact any direct numerical integration of the
scalet equations, for γ real. However, we can regulate the contribution of this mode by taking
γ along a complex direction,

γ = |γ | eiθ (166)

so long as

cos(5θ) < 0. (167)

We recall that the �DCWT wavelet expansion is equivalent to the scaling transform
1
ν

∫
db
a
S2(

x−b
a

)�(x), for a scaling function satisfying equation (22). If we are to work with

complex scales, a = |a|e−i θ2 (i.e. γ = 1
2|a|2e−iθ ), then we must be sure that we can still recover,

�(b), in the limit |a| → 0:

lim
|a|→

1

ν

∫ +∞

−∞

dx

|a|e−i θ2
S2

(
x − b

|a|e−i θ2

)
�(x) = �(b). (168)

That is, we require that the effective scaling function, S2;θ (z) ≡ eiθ/2S2(zeiθ/2), be bounded
(asymptotically vanishing), as Re(z) → ±∞, for fixed θ .

For the Mexican hat wavelet and dual functions, from the analysis by HM (1998), the
corresponding S2(z), will have a Gaussian character (in Fourier space). Let us assume that
S2(z) is of a Gaussian form, and we can use e−z2/2 as a guide. Then, e−z2eiθ

, is bounded, in the
above manner, so long as cos(θ) > 0.

Combining this with the condition in equation (167), we see that π
2 < 5θ < 3π

2 satisfies
both the scalet (regulating) condition, as well as the boundedness of the S2;θ scaling function.

For σ = e−i θ2 , the complex scale DCWT signal-wavelet inversion formula is (refer to
appendix D)

�(b) = 1

3.427

+∞∑
l=−∞

+∞∑
j=−∞

Dmh

(
b − jσ2l − δl[b]

σ2l

)
1√
σ2l

Wmh�(σ2l , jσ2l + δl[b]) (169)
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where

b = nl[b](σ 2l) + δl[b]. (170)

Note that σ 2l is the complex scale, and δl[b] is the residual value, for given (complex) b, after
determining the optimal integer nl[b].

We will take θ to be the mid-point of the interval π
10 < θ < 3π

10 , or θ = π
5 . In

general, for this problem, the smaller the θ value taken ( π
10 < θ ), the more dominant the

exponentially explosive mode in equation (165) will become. The larger θ becomes (θ < 3π
10 ),

the slower the zero scale, asymptotic convergence to �(b) will become (requiring integration
of the corresponding scalet equation to smaller scales), since the effective, underlying, scaling
function becomes less compactly supported (i.e. S2(

x
e−iθ/2 ), refer to appendix D). Numerical

integration of the scalet equation, for θ ≈ 0.628, could only be done up to a = 1
2 . At this

scale, TPQ-DCWT was unable to clearly discern any estimates for the (low-lying) discrete
state energies.

It is interesting to note that for the quartic anharmonic oscillator case, the exponentially
decaying mode in equation (150), µ0(γ, b) → f2(b) exp

(− 4ε
3g γ

3
)
, would appear to be

the algebraic counterpart to the mode in equation (165). We can also rotate in the γ -
complex plane and check the viability of the preceding formalism. Although the TPQ-
DCWT identification of discrete state energies is more difficult in the γ -complex plane
(because of the appearance of increased oscillatory behaviour on the part of the generated
determinant), we could, nevertheless, identify clearly recognizable roots corresponding to
the ground energy state of the quartic potential V (x) = x4. As indicated above, a similar
analysis for the V (x) = ix3 problem proved more difficult. What is required is either
greater computational capacity (increased precision), or an alternate strategy for removing
(suppressing) the explosive mode altogether (which still remains significant, even after complex
rotation).

In light of the ε dependence of the asymptotic mode in equation (165), we attempted to
work with sufficiently small ε ≈ O(10−3) values so as to suppress the contributions of this
explosive mode. Indeed, the other two modes (i.e. equation (163)) are algebraic in γ−1/2

and ε; therefore, a significant reduction in ε will have the desired effect of suppressing the
exponentially explosive mode, while not significantly diminishing the more physical modes,
which are numerically moderate in magnitude. Our numerical experiments confirm this, and
we were able to work with smaller scales, a = 1

4 ; however, we were still unable to detect any
discrete state energy values.

7. Conclusion

Given the comprehensive nature of this paper, we briefly summarize the main points developed
in this work.

We have defined the scalet equation which can be used to generate the wavelet transform
coefficients in terms of a reduced set of linear variables. For arbitrary, one-dimensional,
bound-state rational fraction potentials, the number of these linear variables is identical to
the total number of all complex turning points. This representation for the wavelet transform
coefficients is then used to implement a turning point quantization procedure for generating
the eigenenergies and wavefunction.

Unlike the (multidimensional) TPQ-MRF formulation of Handy et al (HMBB 2000),
where many spurious solutions were generated, the present scalet-wavelet analysis generates
no, or substantially fewer, spurious solutions; as discussed in the contexts of the double-well
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quartic anharmonic oscillator, and the quartic potential, respectively. This is in keeping with
the basic wavelet philosophy which makes them appropriate for analysing transient, short-scale
features. This was the original motivation for this paper.

Although we did not discuss how to optimally select the mother wavelet, so as to reduce the
number of spurious solutions, we did show that even the simplest use of a wavelet formalism
(i.e. the Mexican hat mother wavelet), within a TPQ framework, can improve upon the TPQ-
MRF analysis. In a forthcoming work, we will show how a moment quantization analysis can
suggest optimal mother wavelets.

One important distinguishing feature about the TPQ strategy adopted in this, and other
cited works, is that we emphasize all of the complex turning points, not just the real ones (as
is the case in conventional JWKB analysis). Semiclassical methods, such as JWKB, are not
too accurate for low-lying states. It has been conjectured that any method, such as ours, that
emphasizes all of the (complex) turning points, should be able to generate very accurate results
for the low-lying states. Our results are consistent with this.

We gave a detailed asymptotic analysis of the scalet equation, proving that for any energy
parameter value, E, there will be scalet modes that converge to the corresponding (physical
or unphysical) Schrödinger equation solution, at least in the neighbourhood of the turning
points. When used in this manner, a pure scalet representation (i.e. solving numerically for
the scalet equation solutions) cannot distinguish between physical and unphysical solutions,
and must be used within the context of a wavelet representation for the wavefunction; wherein
unphysical (unbounded) Schrödinger equation solutions are represented in terms of bounded
(L2) configurations.

The asymptotic analysis of the scalet equation was derived for the generic quartic
anharmonic oscillator problem (including the double-well problem, and the pure quartic case).
It was also presented for the non-Hermitian case of the complex potential −ix3, recently studied
by Bender and Boettcher (1998). For this problem, the underlying numerical analysis revealed
the inability of a scalet–wavelet TPQ ansatz to yield any results, even when introducing a
complex scale. By way of contrast, the application of the MRF-TPQ analysis of HMBB,
yields very good results (Handy et al 2001). This one example underscores the practical utility
of TPQ methods in general.

The scalet equation is analytic in ε, the kinetic energy expansion parameter. We derived
the zeroth-order form of the scalet configuration, within the ε expansion framework. In a
forthcoming work, we derive the matrix-Green function analysis that generates all of the
higher-order (in ε) configurations. It was argued that within an ε expansion framework, the
scalet representation may be able to circumvent having to work with wavelets. Indeed, the ε-
scalet expansion is very similar (and more rigorous) than the high-temperature lattice expansion
formalism of Bender and Sharp (1981) and Handy (1981), simply because it avoids having to
define a lattice model representation for the continuum problem.

Given all of the above, we believe that the present formalism, particularly as derived from
a moment quantization perspective, should enhance the appreciation for, and relevancy of,
wavelet analysis to quantum physics.

Acknowledgments

This work was supported in part by the National Science Foundation through the Center
for Theoretical Studies of Physical Systems (grant no HRD9450386), and Cooperative
agreement DAAL01-96-2-0001 through the ARL-Lockheed Martin Fed Lab Consortium.
CRH acknowledges useful discussions with Professor Carl Bender, and Professor S Twareque



Scalets, wavelets and (complex) turning point quantization 3615

Ali, particularly during the XIX Workshop on Geometric Methods in Physics, Bialowieza,
Poland, July 2–8, 2000, where part of this work was presented.

Appendix A. Convergence of DCWT representation within the complex x-plane

Assume that the only singularities bounding SA are isolated poles, �(z) ≈ 1
(z−z0)p

. For

turning points outside this strip, τ� /∈ SA, that also satisfy lima→0 a
−p∂

p−1
ξ S2(ξ)| z0−τ�

a
= 0,

then S2�(a, τ�) will converge to �(τ�). This follows upon rewriting the relevant scaling
transform as

S2�(a, b) = 1

ν

∫ +∞

−∞

dx

a
S2

(
x

a

)
�(x + b)

which readily follows by analytic continuation for any b ∈ SA. This integral representation can
then be analytically continued into the regime b → τ�. This implicitly requires a deformation
of the real x-axis contour, � → C, so that (a subset of) the corresponding set of points,
{z + b|z ∈ C}, encircle the singularity as b → τ�:

S2�(a, τ�) = 1

ν

∫
C

dz

a
S2

(
z

a

)
�(z + τ�).

The additional contour integral around the singularity corresponds to z + τ� = z0 + reiθ , for
0 � θ < 2π . The associated integral becomes

1

aν
ir
∫ 2π

0
dθ eiθS2

(
z0 − τ� + reiθ

a

)
1

(reiθ )p
.

This becomes

2π i

(p − 1)!νap
∂p−1S2

(
z0 − τ�

a

)
.

Thus

S2�(a, τ�) = 2π i

(p − 1)!νap
∂p−1S2

(
z0 − τ�

a

)
+

1

ν

∫ +∞

−∞

dx

a
S2

(
x

a

)
�(x + τ�). (A1)

In the zero-scale limit, the first term vanishes, under the above assumptions, and the
integral expression yields �(τ�) (i.e. perform the change of variables y = x/a, and then
expand �(ay + b), around b).

Since our ultimate objective is to use the above analysis for evaluating the second-order
derivative, at the turning point (i.e. ∂2

τ = a−2∂2
τ/a), one can choose dual-wavelet pairs so that

the corresponding S2 satisfy the above conditions (i.e. lima→0 a
−(p+2)∂p+1S2(

z0−τ�
a

) = 0).
If the singularity is a branch point, and �’s discontinuity is finite along the chosen cut,

then a similar analysis follows. We are assuming that �(x) is well behaved, and sufficiently
bounded along the real x-axis, so that S2�(a, b) is analytic both in α = 1

a
and b. As such,

the analytic continuation of S2�(a, b), as b → τ�(/∈ SA), cannot depend on how �’s cut is
chosen. However, we will find that the analysis is simplified if the cut is taken in a particular
manner, as clarified below.

Let Cz0 ≡ {z0 + ξ |0 � Im(ξ) � Im(τ�)} represent the locus of points defining the cut.
Even though the cut may be infinite in extent, we are only interested in it over the finite range
specified. This is implicitly assumed. The cut intersects the infinite line Lτ� ≡ {x + τ�|x ∈ �},
at the point Lτ�

⋂
Cz0 = {xc + τ�}, where xc is real.
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As b → τ�, the original real axis contour (i.e. x ∈ �) must be deformed into a new
contour, � → C, so that the new set of points {z + τ�|z ∈ C} includes a subset that hugs the cut
on both sides:

C = (−∞, x(−)
c )

⋃
{z|z + τ� = z0 + ξ ± 0(+), z0 + ξ ∈ Cz0}

⋃
(x(+)

c ,+∞). (A2)

We refer to the middle set of points as the Ccut contour.
Although there are infinitely many ways of choosing the cut, they will be of two types.

Assume that Re(τ�) � Re(z0) and Im(τ�) > 0, for specificity. The cut will be either to
the right or left of τ�. If it is to the right, then at some point along the cut we will have
Re(z0 + ξ) = Re(τ�). If the cut is to the left, then there will be no such point.

The part of the deformed contour surrounding the cut, Ccut , corresponds to an integral
expression of the form:∫

Ccut

dξ

a
S2

(
z0 + ξ − τ�

a

)
(�(z0 + ξ + 0+) − �(z0 + ξ − 0+)).

If the cut is to the right of the turning point, then such integrals will usually involve infinite
integrands, as a → 0, making the ensuing analysis complicated (i.e. there will be cancellations
of very large, positive/negative, terms). This is because, since S2(w) is bounded along the
Re(w)-axis, it has to become infinite along some direction in the complex w = |w|eiθ -plane,
for θmin < θ < θmax (i.e. |w| → ∞). Along the indicated contour, under the assumption
that the cut is to the right of τ�, for tan−1(θ) = Im(τ�−(z0+ξ))

Re(τ�−(z0+ξ)) , we have that θ will vary over an
interval that includes π/2, and should intersect the interval (θmin, θmax).

In order to avoid having to deal with the infinite intricacies of the above representation, it
is preferable to choose the cut to be to the left of τ�. For this case, the analytically continued
scaling transform becomes

S2�(a, τ�) = 1

ν

∫
Ccut

dξ

a
S2

(
z0 + ξ − τ�

a

)
(�(z0 + ξ + 0+) − �(z0 + ξ − 0+))

+
1

ν

∫ x−
c

−∞

dx

a
S2

(
x

a

)
�(x + τ�) +

1

ν

∫ +∞

x+
c

dx

a
S2

(
x

a

)
�(x + τ�). (A3)

The last two integrals correspond to integrations with respect to the left and right cut
contributions (i.e. �(x−

c + τ�) �= �(x+
c + τ�)), respectively. If the variation of the angle θ ,

as previously defined, satisfies θ < θmin, then the first integral will vanish, in the small-scale
limit. For these cases, the zero-scale limit of the S2�(a, τ�) scaling transform would recover
�(τ�) for that turning point value corresponding to the Riemannian sheet satisfying the above
conditions. If not, and no other cut orientation can be found satisfying these conditions, then
the zero-scale limit for S2�(a, τ�) will be infinite.

It should be noted that if all of the preceding analysis is done with respect to ∂2
z �(z), and

not �(z), then ∂2
z �(τ�) = 0, on all the Riemannian sheets, since the analytic continuation of

the Schrödinger equation preserves the definition of the turning point, on all the Riemannian
surfaces.

Appendix B. The quantization scale and the extremal wavelet contributions to Ψ(τ )

We now derive certain relations that automatically follow from the definition of the scaling
transform, and certain minimal conditions on the choice of scaling function. These play an
important role within the HMBB analysis, although not fully developed by them in their work.

As has been noted in equation (19), the scaling transform, S�(a, x), evaluated at scale a,
and position x, represents the sum over the wavelet transform decomposition of�(x), summed
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over all scales av � a, and translation values −∞ < b < +∞. However, −∂aS�(a, x), is the
sum over the wavelet transform decomposition of �(x), at fixed scale av = a, summed only
over the translation values.

We are particularly interested in those cases where x = τ�, a (complex) turning point. At
a given position, τ�, we focus on the extremal values of ∂aS�(a, τ�), as a function of a. These
are denoted by ae(τ�), and satisfy

∂2
a S�(ae(τ�), τ�) = 0. (B1)

They define the important wavelet scales contributing to the system, at point τ�. The global
maximum wavelet contribution, at point τ�, is denoted by aw(τ�), and is one of the extremal
scales: aw(τ�) ∈ {ae(τ�)}. At aw(τ�) we have

|∂aS�(aw(τ�), x)| � |∂aS�(a, x)| 0 < a < ∞. (B2)

Since lima→0 S�(a, x) = �(x), it naturally follows that the same holds for any
derivative with respect to x. In particular, from a TPQ perspective, one is interested in
lima→0 ∂

2
x S�(a, x) = ∂2

x�(x). The natural question is, for x = τ�, at what scale value
does this asymptotic limit manifest itself? That is, at what scale, aQ(τ�), do we have
∂2
τ S�(a, τ�) ≈ 0, for a � aQ(τ�)? From the TPQ perspective, this would define the

‘quantization scale’, for the turning point τ�. It turns out that the zero-scale limit for ∂2
x S�(a, x)

and ∂2
a S�(a, x) are very much related. However, the latter is the more natural expression to

consider, within the context of scaling transform theory. We do so below, in defining the
quantization scale.

The zero-scale asymptotic expansion for the scaling transform,

S�(a, x) = 1

ν0

∫
db

a
S

(
b − x

a

)
�(b)

is given by (i.e. perform the change of variables y = b−x
a

, and expand around x, within the
representation S�(a, x) = 1

ν0

∫
dy S(y)�(ay + x)) is

S�(a, x) = �(x) +
1

ν0

∞∑
n=1

anνn

n!
∂n
x�(x). (B3)

Assuming ν1 = 0, we have in the zero-scale limit

S�(a, x) = �(x) +
ν2

2ν0
a2∂2

x�(x) + O(a3) (B4)

∂2
x S�(a, x) = ∂2

x�(x) + O(a2) (B5)

and

∂2
a S�(a, x) = ν2

ν0
∂2
x�(x) + O(a). (B6)

Thus, under the simple assumption that ν1 = 0 and ν2 �= 0, we find that both ∂2
x S�(a, x) and

∂2
a S�(a, x) converge, in the zero-scale limit, to ∂2

x�(x) (up to a proportionality factor).
If ν3 �= 0, then ∂2

x S�(a, x) converges faster than ∂2
a S�(a, x); however, if ν3 = 0 (i.e. the

scaling function, S, is symmetric), then both converge at the same rate (i.e. O(a2)). Under this
assumption, we prefer to work with the latter.

The turning points of the physical wavefunction correspond to points of inflection where
the second derivative is zero, ∂2

τ �(τ�) = 0. The zero-scale limit of the scaling transform
converges fastest at the inflection points. This follows readily from the above expansion, since
S�(a, τ�) = �(τ�)+O(a3). However, the same does not apply for the second-order derivative
expressions. They converge at the same rate, O(a2), regardless of whether or not the point x
is an inflection point.
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Defining the extremal scales at the turning points. We have the following, important relations,
at a = ∞ and 0:

∂aS�(a, x) →
{

0, as a → ∞ by definition of S�(a, x)

0, as a → 0 from equation (177)
(B7)

also,

∂2
a S�(a, τ�) →

{
0, as a → ∞ by definition of ∂aS�(a, τ�)

0, as a → 0 from equation (179).
(B8)

Therefore, ∂aS�(a, τ�) must have local extrema on the positive real axis, a ∈ (0,∞); so too
for ∂2

a S�(a, τ�). In the former case, the local extrema define the extremal wavelet scales,
ae(τ�), and the global extremal wavelet scale, aw(τ�).

Let us designate the smallest of these extremal scales by

aσ (τ�) ≡ Min{ae(τ�)}. (B9)

At both endpoints of the interval (0, aσ (τ�)), the function ∂2
a S�(a, τ�) becomes zero. It cannot

have any other zero inside this interval, by definition of aσ . Thus, it must have extremal values
within this interval. The smallest of these defines the quantization scale, aQ(τ�). Starting
at a = aQ(τ�), and proceeding to zero, a → 0, the function ∂2

a S�(a, τ�) monotonically
converges to zero, in accordance with equation (181). Therefore, we define the quantization
scale, at turning point τ�, to be the smallest scale satisfying

∂3
aS�(aQ(τ�), τ�) = 0. (B10)

It is evident from the above that

aQ(τ) < aw(τ). (B11)

This relation is the main criterion used by HMBB to discriminate between physical solutions
and spurious solutions generated through their particular turning point quantization approach.

We emphasize that all of the preceding analysis did not make any assumptions specific to
the physical problem. All that was assumed is that�(x) is a bounded, integrable configuration,
and that the turning points can be taken to be any of the inflection points of the configuration.

Appendix C. Turning-point quantization within the multiscale reference function
representation

In their work, HMBB do not directly solve the scalet equation. Instead, they investigate the
extent to which another moment-dependent, wavefunction representation yields approximate
scalet solutions. Specifically, from the wavefunction representation developed within the work
by Handy (1996), and Tymczak et al (1998a, b), one has

�MRF (x) =
∞∑
n=0

an[E, ε, µ0, . . . , µms
](−∂x)

nR(x) (C1)

involving an arbitrary (within certain restrictions) reference function, R(x), and readily
obtainable coefficients, an, linearly dependent on the missing moments

an[E, ε, µ0, . . . , µms
] =

ms∑
�=0

Dn,�(E, ε)µ�. (C2)
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We refer to the above representation as the multiscale reference function (MRF)
representation. In their work, Tymczak et al argue that the MRF basis, {(−∂x)

nR(x)},
when properly chosen, will recover the physical solution (particularly in the momentum
representation).

Interestingly, the MRF representation is formally analogous to the distributed
approximating functionals (DAFs) of Hoffman and Kouri (1993). This is because it can
be formally rederived from the simple identity

1√
2π

= Ĥ−1(k)Ĥ (k) (C3)

where Ĥ (k) is a bounded, Fourier transform expression, with an analytic inverse. It must also
have a bounded, inverse Fourier transform, H(x). Expanding Ĥ−1(k) = ∑∞

n=0 an(ik)
n, and

implementing an inverse Fourier transform yields δ(x) = ∑∞
n=0 an(∂x)

nH(x), which can be
translated

δ(x − b) =
∞∑
n=0

an(∂x)
nH(x − b). (C4)

Integrating with respect to�(x) then yields�(b) = ∑∞
n=0 an(−∂b)

n
∫

dx �(x)H(x−b),
which reduces to the MRF representation upon identifying

∫
dx �(x) H(x − b) ≡ R(b).

At a given expansion order, N , HMBB imposed the TPQ conditions

∂2
x�

(N)
MRF (τ�(E)) = 0 0 � � � ms (C5)

or

N∑
n=0

an[E, ε, µ0, . . . , µms
](−∂x)

n+2R(τ�(E)) = 0. (C6)

Substituting the an-missing moment relation (i.e. equation (186)) defines a determinantal
equation of dimension 1 + ms :

Det
(
(

(N)
�1,�2

(E, ε)
) = 0 (C7)

where

(
(N)
�1,�2

(E, ε) ≡
N∑

n=0

Dn,�2(E, ε)(−∂τ�1
)n+2R(τ�1(E)) = 0. (C8)

Upon determining the energy roots, one can recover the missing moments, subject to a
convenient normalization (i.e. µ0 = 1). This in turn determines the MRF configuration.

C.1. DCWT analysis for identifying the physical TPQ-MRF solutions

The above TPQ-MRF approach yielded excellent results for various one- and two-dimensional
problems; however, many spurious solutions were also generated. In order to define a
multiscale procedure for discriminating between the physical and unphysical (spurious)
solutions, HMBB implemented a wavelet-based analysis.

It is to be emphasized that the scalet equation will be satisfied to all scales only for the
physical solution.

For a given TPQ-MRF solution, denoted by �
(N)
MRF (x), HMBB determined the smallest

(critical) scale, ac(τ�), up to which the approximate solution would satisfy the scalet equation.
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This critical scale measures the physical content of the generated TPQ-MRF configuration
(whether it is an actual valid physical approximation or a spurious configuration).

Thus, one calculates the generalized moments, µ�(α, b) = ∫
dx xpS(αx)�

(N)
MRF (x + b),

from the N th-order, MRF-generated configuration, �(N)
MRF , and determines the smallest scale,

ac(τ�), at turning point τ�, up to which they satisfy the scalet equation:

∂α
−→µ (α, τ�) ≈ M(α, τ�, E, ε)−→µ (α, τ�) (C9)

(i.e. 0 � α � 1/ac(τ�)).
Utilizing the Mexican hat mother wavelet kernel, one can compute the wavelet transform

Wmh�MRF (a, b) = 1√
a

∫
dx Wmh

(
x − b

a

)
�

(N)
MRF (x). (C10)

We can then define�(N)
MRF ’s Mexican hat dual-wavelet decomposition, as given in equation (23).

The summation of this expansion, over all terms corresponding to L � l < ∞, is the scaling
transform S2�MRF (2L, τ ), for a particular scaling function, S2, derived by Handy and Murenzi
(1999).

The extremal scale values of the generated wavelet transform, Wmh�MRF (a, τ�(E)),
essentially define the extremal wavelet scales corresponding to ∂aS2�MRF (a, τ�(E)), as
discussed in the previous subsection. The global extremal wavelet scale, aw(τ�(E)), can
then be identified.

The important question is then, what is the relationship between aw(τ�(E)) and the critical
scale ac(τ�(E))?

This is easier to address if we first assume that �MRF is a spurious solution. For this case,
small-scale errors (‘noise’) in the MRF representation conspire to generate a false solution
to the TPQ-MRF conditions (i.e. equation (190)). The scale at which these significant errors
contribute, aw(τ�(E), must be smaller than the scale that measures the (minimal) possible
physical content of these spurious configurations (as manifested by the corresponding ac). In
other words, for the spurious solutions we must have aw(τ�(E)) < ac(τ�(E)).

If �MRF is a good physical approximation, then there must be consistency between ac
and aw. That is, the support of the wavelet transform (as measured by the scale aw) must
lie within the scale interval that measures the physical content of the MRF solution. That is,
aw ∈ (ac,∞).

Thus, within the TPQ-MRF formalism, the discriminating relation for distinguishing
between physical and spurious solutions corresponds to{

aw(τ�(E)) < ac(τ�(E)) for unphysical (spurious) �MRF

ac(τ�(E)) < aw(τ�(E)) for physical �MRF .
(C11)

Appendix D. DCWT representation for complex scales

We consider the scaling transform for complex scales, a = σ |a|, and σ = e−iθ/2:

S�(a, x) = 1

ν0

∫ +∞

−∞

db

σ |a|S
(
b − x

σ |a|
)
�(b). (D1)

We assume that S( b
σ
) is a bounded configuration (asymptotically vanishing faster than any

exponential e−γ |b|) along the real b-axis, provided θmin < θ < θmax (which includes θ = 0).
Under these conditions, the scaling transform exists for all |a| and x, and will converge to
�(x) (assuming that � is an entire function), in the zero-scale limit |a| → 0.
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Indeed, the new function Sσ (x) ≡ 1
σ
S( x

σ
), can be regarded as the new scaling function;

and its zeroth-order moment is σ independent,
∫ +∞
−∞ dx Sσ (x) = ν0 = ∫ +∞

−∞ dx S(x).
We can now repeat the DCWT analysis developed in the work by Handy and Murenzi

(1998), with respect to the scaling function, S1 ≡ S. In terms of the Fourier transform,
Ŝ(k) ≡ 1√

2π

∫
dy e−ikyS(y), we have that Ŝσ (k) = Ŝ1(σk).

The DCWT analysis of Handy and Murenzi uses the following defining relationship
between the scaling function and the dual-wavelet configurations:

Ŝ(k) − Ŝ(ρk) =
[ +∞∑

j=−∞
D(j) eifjk

]
Ŵ
(

k

a0

)
. (D2)

This can be analytically continued into the complex k-plane, yielding

Ŝσ (k) − Ŝσ (ρk) =
[ +∞∑

j=−∞
D(j) eifjσk

]
Ŵσ

(
k

a0

)
(D3)

where Ŵσ (
k
a0
) = Ŵ( σk

a0
). The corresponding inverse Fourier transform expressions are

Wσ (x) = 1
σ
W( x

σ
).

The inverse Fourier transform expansion of the former identity yields the DCWT
reconstruction formula

�(x) = 1

ν0

+∞∑
l=−∞

+∞∑
j=−∞

D
(
x − f a0jρ

l − δl[x]

f a0ρl

)
1√
ρl

W�(ρl, f a0jρ
l + δl[b]) (D4)

where

W�(a, x) = 1√
a

∫
dξW

(
ξ − x

a

)
�(ξ) (D5)

and δl[x] is the residual amount, at scale ρl , satisfying

x = nl[x]f a0ρ
l + δl[x]. (D6)

The generalization of this, for the case σ �= 1 (i.e. f → f σ , and W → Wσ , except we
redefine the 1√

a
factor) is then

�(b) = 1

ν0

+∞∑
l=−∞

+∞∑
j=−∞

D
(
b − f σa0jρ

l − δl[b]

f σa0ρl

)
1√
σρl

Wσ�(ρl, f σa0jρ
l + δl[b]) (D7)

where

Wσ�(a, b) = 1√
σa

∫
dξW

(
ξ − b

σa

)
�(ξ) (D8)

and δl[b] is the residual amount, at scale σρl , satisfying

b = nl[b]f a0σρ
l + δl[b]. (D9)

For the Mexican hat wavelet and dual case, Wmh(x) = Dmh(x), with f = a0 = 1, the
crucial question is whether the corresponding scaling function, S( y

σ
), is sufficiently bounded,

for real values of y. However, this has to be influenced by the extent to which the dual-wavelet
expansion is definable for such complex scales. This is our assumption.
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